Rain evaporation, snow melt and entrainment at the heart of water vapor isotopic variations in the tropical troposphere, according to large-eddy simulations and a two-column model - Faculté des Sciences de Sorbonne Université Accéder directement au contenu
Article Dans Une Revue Journal of Advances in Modeling Earth Systems Année : 2021

Rain evaporation, snow melt and entrainment at the heart of water vapor isotopic variations in the tropical troposphere, according to large-eddy simulations and a two-column model

Résumé

The goal of this study is twofold. First, we aim at developinga simple model as an interpretative framework for the water vapor isotopic variations in the tropical troposphere over the ocean. We use large-eddy simulations to justify the underlying assumptions of this simple model,to constrain its input parameters and to evaluate its results. Second, we aim at interpreting the depletion of thewater vapor isotopic composition in the lower and midtroposphere as precipitation increases, which is salient features in tropical oceanic observations. This constitutes a stringent test on the relevance of our interpretative framework. Previous studies, based on observations or models with parameterized convection, have highlighted the roles of deep convective and meso-scale downdrafts, rain evaporation, rain-vapor diffusive exchanges and mixing processes. The interpretative framework that we develop is a two-column model representing the net ascent in clouds and the subsiding environment. We show that the mechanisms for depleting the troposphere when precipitation rateis larger all stem from the higher tropospheric relative humidity. First, when the relative humidity is larger, less snow sublimates before melting and a smaller fraction of rain evaporates. Both effects lead to more depleted rain evaporation and eventually more depleted water vapor. Thismechanism dominates in regimes of large-scale ascent. Second, the entrainment of dry air into clouds reduces the vertical isotopic gradient and limits the tropospheric depletion of water vapor. This mechanism dominates in regimes of large-scale descent.
Fichier principal
Vignette du fichier
article_SAMiso_profiles (1).pdf (622.11 Ko) Télécharger le fichier

Dates et versions

hal-03025845 , version 1 (26-11-2020)

Identifiants

Citer

Camille Risi, Caroline Muller, Peter N Blossey. Rain evaporation, snow melt and entrainment at the heart of water vapor isotopic variations in the tropical troposphere, according to large-eddy simulations and a two-column model. Journal of Advances in Modeling Earth Systems, 2021, 13 (4), ⟨10.1029/2020MS002381⟩. ⟨hal-03025845⟩
67 Consultations
136 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More