B. Ferguson and X. Zhang, Materials for terahertz science and technology, Nat. Mater, vol.1, p.26, 2002.

M. Tonouchi, Cutting-edge terahertz technology, Nat. Photon, vol.1, p.97, 2007.

P. U. Jepsen, D. G. Cooke, and M. Koch, Terahertz spectroscopy and imaging-Modern techniques and applications, Laser Photon. Rev, vol.5, p.124, 2011.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim et al., Terahertz imaging using quantum cascade lasers-a review of systems and applications, J. Phys. D: Appl. Phys, vol.47, p.374008, 2014.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield et al., Terahertz semiconductor-heterostructure laser, Nature, vol.417, p.156, 2002.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, 4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation, Appl. Phys. Lett, vol.3, issue.7, p.1015, 2003.

S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise et al., Terahertz quantum cascade lasers operating up to ? 200 K with optimized oscillator strength and improved injection tunneling, Opt. Express, vol.20, p.3866, 2012.

M. S. Vitiello, G. Scalari, B. Williams, and P. Natale, Quantum cascade lasers: 20 years of challenges, Opt. Express, vol.23, p.5167, 2015.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho et al., Terahertz quantum-cascade laser source based on intracavity difference-frequency generation, Nat. Photon, vol.1, p.288, 2007.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer et al., Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation, Appl. Phys. Lett, vol.92, 2008.

Y. Jiang, K. Vijayraghavan, S. Jung, F. Demmerle, G. Boehm et al., External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2-5.9 THz tuning range, J. Opt, vol.16, p.94002, 2014.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang et al., Broadly tunable monolithic room temperature terahertz quantum cascade laser sources, Nat. Commun, vol.5, p.4267, 2014.

Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi, Widely tunable room temperature semiconductor terahertz source, Appl. Phys. Lett, vol.105, p.201102, 2014.

M. A. Belkin and F. Capasso, New frontiers in quantum cascade lasers: high performance room temperature terahertz sources, Phys. Sci, vol.90, p.118002, 2015.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, High performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design, Appl. Phys. Lett, vol.96, p.241107, 2010.

K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi et al., Terahertz generation in midinfrared quantum cascade lasers with a dualupper-state active region, Appl. Phys. Lett, vol.106, p.251104, 2015.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari et al., Quantum cascade lasers: from tool to product, Opt. Express, vol.75, issue.23, p.8462, 2015.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse et al., Terahertz sources based on ?erenkov differencefrequency generation in quantum cascade lasers, Appl. Phys. Lett, vol.100, p.251104, 2012.

R. L. Sutherland, Handbook of Nonlinear Optics 2nd Ed, pp.33-120, 2003.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat et al., Bound-tocontinuum and two-phonon resonance, quantum cascade lasers for high duty cycle, high-temperature operation, IEEE J. Quantum Electron, vol.38, issue.6, p.533, 2002.

S. Jung, A. Jiang, Y. Jiang, K. Vijayraghavan, X. Wang et al., Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources, Nat. Commun, vol.5, p.4267, 2014.

Q. Lu and M. Razeghi, Recent Advances in Room temperature, high-power terahertz quantum cascade laser sources based on difference-frequency generation, Photonics, vol.3, issue.42, pp.1-10, 2016.

K. Fujita, S. Junga, Y. Jiang, J. Kim, A. Nakanishi et al., Recent progress in terahertz difference-frequency quantum cascade laser sources, Nanophotonics; aop, p.1, 2018.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, Y. Bai, and S. Slivken, Proc. SPIE 9199, p.919902, 2014.

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications 2nd Ed, pp.367-392, 2005.

A. Hamadou, S. Lamari, and J. Thobel, Rate equations analysis of a dualwavelength quantum cascade laser, Opt.commu, vol.305, p.147, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00872061

A. Hamadou, S. Lamari, and J. Thobel, Delay time calculation for dualwavelength quantum cascade lasers, J. Appl. Phys, vol.114, p.203102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00912357

A. Hamadou, J. Thobel, and S. Lamari, Dynamic modeling of a terahertz quantum cascade laser based on difference frequency generation, Optik, vol.156, p.596, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02335135

M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons, IEEE J. Quantum Electron, vol.44, p.12, 2008.

M. Geiser, C. Pflügl, A. Belyanin, Q. Wang, N. Yu et al., Gain competition in dual wavelength quantum cascade lasers, Opt. Express, vol.18, p.9900, 2010.

Y. Shen, Nonlinear Infrared Generation 4th Ed, 1977.

S. Jung, J. Kim, Y. Jiang, K. Vijayraghavan, and M. Belkin, Terahertz difference-frequency quantum cascade laser sources on silicon, p.38, 2017.

R. W. Boyd, Nonlinear Optics, 2003.