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Stabilization of the wave equation in a polygonal
domain with cracks

Gilbert Bayili, Serge Nicaise

Abstract The stabilization of the wave equation in a polygonal domain with cracks
is analyzed. Using the multiplier method, we show that a boundary stabilization aug-
mented by an internal one concentrated in a small neighbourhood of the cracks lead
to the exponential stability of the problem.

Keywords Stability - Wave equation - Cracks

1 Introduction

We consider a bounded polygonal domain € of R? with straight cracks and denote
by I its boundary. We assume that I' =[" p UT" y where I'p and T'y are two open
connected parts of I'. We also assume that ['y= F}\,U I‘Iz\, where F}\,is the set of

cracks. If Tp N [_’12\, is not empty, we assume that the interior angle at each corner
between I'p and F12\, is < m (that means that €2 is convex in a neighbourhood of this
corner). We further suppose that the cracks emerge from FIZV in the following sense. If
we denote by (0)1<j<n the different cracks of €2, then forall j € {1...,n}, each o;
is supposed to have one extremity 7; in common with I'Z, while the other extremity
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Fig. 1 Polygonal domain with cracks

S does not belong to I'p U 1:‘%\,, see Fig. 1. This assumption implies that the cracks
never meet the Dirichlet part of the boundary. In the sequel v denotes the unit outward
normal vector along FIZV (defined everywhere except at the vertices of FIZ\,), while on
a crack o it is simply a fixed unit normal vector.

On this domain €2, we consider the following problem

Uy — Au+auy, =0in Q x (0, +00)

u=0 on I'p x (0, +00)

2 —0 on I'} x (0, +00) (1.1

dqv
g—g+au+but=0 on I'Z x (0, +00)
u(-,0) =up, u(-,0) =uy in Q,

where a € L®°(Q), «, b € H‘Y(Flzv), for some s > % are such that

a20a.e.inQ,aZOa.e.inF,2V,b>b0>0a.e.inI‘12\,
and
a>ag>0a.e inONE,

where O = U;'.zl 0j, O; being a fixed neighbourhood of o; as small as we want and
ap, bo are positive real numbers. We further assume that

int I'p # @ or a(x) > 0,¥x € I'y,. (1.2)



Note that the boundary condition

0
a—Z:O on F}VX(O,—i-oo)

means that it holds on both sides of the cracks.
We suppose that the domain verifies the following geometric conditions:

Jxp € R?: (x —xp) -v <0onTpand (x —xp)-v>0onTl%, (1.3)

(x—8;)-v(x)>00n (0, NITI\{T;}, Vji=1,...,n (1.4)

Problem (1.1) is a wave equation with a standard damping term on FIZV but set in a
domain with cracks. Such a problem was largely studied in the literature but always
without the presence of cracks, see [4,10,12,13,16]. We also refer to [2,3] for stability
results concerning the elastodynamic system with mixed boundary conditions. Let us
notice that some controllability results in domain with cracks are obtained in [6] with
some geometrical assumptions and in [17-19] with weaker assumptions by adding
internal control near the crack tips. In the spirit of these later papers, due to the expected
singular behavior of the solution near the crack tips, we add an additional internal
damping in a small neighbourhood of the cracks. Under the previous assumptions,
using the multiplier method we show the exponential stability of our problem.

Note that all the above assumptions are used in the proof of our stability result
(this will be specified through the paper), and are not easy to relax except the one
concerning the convexity near the corner of I'p and I'%,, indeed if this is not the case
it suffices to add an internal damping in a neighbourhood of these corners to get an
exponential decay.

The paper is organized as follows. Section 2 is devoted to the well posedness
of problem (1.1) obtained by using standard semigroup theory. In Sect. 3, we state
the exponential stability result and recall a useful integral inequality from [10]. Some
technical results concerning regularity results for elements in the domain of the Laplace
operator and the use of some Green’s formulas are proved in Sect. 4. Finally by the
multiplier method with an appropriated combination of different multipliers we prove
our stability result.

2 Well posedness of the problem

The well posedness of problem (1.1) follows from standard semigroup theory.
By setting U = (u, u;)T, we have U; = (u;, u)T = (uy, Au— a(x)v)’.
Then problem (1.1) can be formally written in the form

U+ AU =0
2.1)
UW) = (ug, up)’,



where the operator A is defined by
A, )T = (—v, —Au + av)T,
with domain

(u,v)" € (E(r; LX) N HIlD(Q)) X HllD(Q)

D(A) = 9 d
such that a_u =0on T} and a_u = —(au+bv) onT%
v v

where
H (@) = {u c H(Q),u = OonFD},
and

E(A: LX(Q)) = {u e H(Q), —Au € LZ(Q)} .

From these definitions, we see that for (u, v)T in D(A) then u belongs to the domain
D(A) of A defined by

9 9
D(A) = {u € E(A; L*() N H (Q) : % =0 onT} and % € Hi(r,%,)] .

Indeed as o, b € H‘Y(Ff\,), by using Theorem 1.4.4.2 of [9], for u, v € HYQ), we
have yp(au + bv) € H 3 (I"IZ\,) (where yy is the trace operator).
Let us now introduce the Hilbert space

H = Hp (Q) x L*(Q)

with the norm

()

and the natural associated inner product

((Z),(Z:)) :/(Vu-Vu*+vv*)dx+/auu*da.
Q 2

Iy

2
— 2 2 2
=Vl @l g + ol




By Green’s formula we see that

(+(1)-()

—/Vv'Vudx—i—/(—Au—i—av)vdx—/avuda
Q Q r2
=/b|v|2dr‘(x)+/a|v|2dx >0,
r; 2
for all (u, v)T € D(A). Hence A is monotone.

Let us prove that the operator A + A is surjective for at least one A > 0.
For (f, g)7 € H, we look for (u, v)T € D(A) solution of

—vt+Aiu=f in €,

AV —Au+av =g in Q,

u=>0 onlI'p, 2.2)
%—g:o onl"liv,

gy toau+bv=0 onTy.

Eliminating v = Au — f,itremains to find u € HllD (Q)NE(A; L2()) which verifies

—Au+Gra+ru=g+@+rf inQ,

u=>0 on FD,

b ot} e3)
v :

%—i—(a—i—bk)u:bf onT%.

The problem (2.3) admits a unique weak solution by using Lax-Milgram’s Lemma.
Indeed multiplying the first equation by v € HllD (£2) and by integrating formally by
parts we get

c(u,v) = F(v),Yv € H} (), (2.4)

where the bilinear and continuous form c is given by

C(u,v):/(Vu.Vv+(Aa+A2)uv) dx+/(a+bk)uvdo, Vu, v e H (),

2
Q r3

while the linear form F is

F(v) =/(g+(a+)»)f)vdx+/bfvda, Vv € HE ().
Q

2
I‘N



Since c is clearly strongly coercive on HllD (2) and F is continuous on H]lD (2)
(because g + (a + A) f belongs to L3(R)), by Lax-Milgram’s Lemma, problem (2.4)
admits a unique solution u € HFID (£2). By taking first test functions v € D(2), we
recover the first identity of (2.3). This garantees that u belongs to E(A; L2(2). Then
using Green’s formula (see Theorem 1.5.3.11 of [9]), we see that u satisfies the third
and fourth identities of (2.3). Setting v = Au— f, we have found a pair (1, v)7 € D(A)
solution of (2.2). This shows that the operator .4 is maximal monotone and therefore
—A generates a Cy semi-group of contractions in . Consequently, we can state the
following existence results.

Theorem 2.1 If (ug,u1) belongs to HllD(Q) x L%(Q), then problem (1.1) has

one and only one weak solution u which satisfies u € C([0, 00), HllD (2) N

CL([0, 00), L2()). Furthermore, if (ug, uy) belongs to D(A), then problem (1.1)
has one and only one strong solution u which satisfies (u, u;) € C([0, 00), D(A)).

3 Stabilization result

We define the energy of problem (1.1) by

E(1) :=% /u,z(x,t)—i-|Vu(x,t)|2dx+/a|u(x,t)|2d(rdt .G

2
Q ri

Now, we give the following exponential stability of problem (1.1).

Theorem 3.1 Let Q be a polygonal domain of R? which satisfies (1.2), (1.3) and (1.4).
Then there exist y > 0 and B > 0 such that the energy of the solution of problem (1.1)
satisfies

E(t)y<ye P'EQ©), V>0

Remark 3.2 To our best knowledge, no stability result is known if an internal damping
is not added near the cracks. It is mainly added in order to be able to use the multiplier
method (see below). If the domain has no crack, then the exponential stability result
holds only by a boundary feedback on FIZ\, under the assumptions (1.2) and (1.3), we
refer to [4,10,13,16].

For our future purposes we recall the following fundamental result which is proved
in [10]:

Lemma 3.3 [10] Let E : Ry —> R4 be a non-increasing function such that there
exists a constant T > 0 independent of t which verifies

+00
/ E(s)ds < TE(t), Yt > 0. (3.2)

t



Then

E@t) < E(0)e'"T), V¢>T. (3.3)

4 Some technical results

Our first goal is to state some regularity results for any element of D(A). For that
purpose, let us recall that the standard crack singularity S; associated with the crack
o with crack tip §; is defined by

(6,
Sj(rj,0;) =r} cos (Ej)

where (7, 6;) are polar coordinates centred at S; such that 6; = 0 or 27 on the crack
oj. For further purposes we also fix a radial cut-off function ®; equal to 1 near S;
and such that ®@; is equal to zero outside a ball B(S;, ;) with a small enough ¢; in
order that ®; is equal to zero near 92\ o;.

Lemma 4.1 There exists ag > 0 (small enough and depending on Q2) such that any
u € D(A) admits the splitting

n
U=1ug +ch(u)cl>j8-,
j=I

where cj(u) € R and ug belongs to W2 P(Q), with p = % + o for all a* € (0, ap).

Proof 1Tt suffices to apply Corollary 4.4.3.8 of [9] (see Remarks 4.4.4.15 and 4.4.4.15
of [9]) with p < 2 such that

1 2 T
—<2—-—< —,
2 P On

where w,, is the maximal angle between the Dirichlet edges of I'p, the Neumann
edges of F12v and the edges between F}\, and FIZ\, (thatis < 27 due to our assumptions).
Note that the trivial embedding

H' (Q) — WP (@), ¥p <2,
implies, via a trace theorem, the embedding
1
H(E)— W' 7P(E),Vp <2,

2
for any edge E of I'y. O



Lemma 4.2 Forallu,z € D(A) we have
ou
Auzdx = — | Vu-Vzdx + a—zda. “4.1)
)
Q Q r

Proof According to the previous lemma, we have

u=uR+ch(u)CI>jS-, “4.2)
j=1

2=k + Y. (0P8, 4.3)
j=1

withc;j(u), cj(z) € R,andug, zg in W2P(Q) forany p = %+cx* forall a* € (0, ag)
where «p > 0 is small enough. But we notice that for a™ < %, the Sobolev embedding
theorem yields

WP (Q) < Whi(Q),

forall p < g < qo := gfgg: We further see that the conjuguate p’ > 1 of p (i.e.

% + # = 1) is smaller than ¢g, consequently we get
WP (Q) — Wh'(Q).
But Theorem 1.4.5.3 of of [9] implies that
®;S; e WH'(Q), Vji=1,...,n.
These two properties implies that
D(A) — WhP(Q).

This embedding allows to use the standard Green’s formula

0
/Audex = —/VuR~Vzdx+/$zdo. 4.4)
v
Q Q r
For the singular part of u, for an arbitrary j = 1, ..., n we write

/A(CIDJSj)zdx = lim / A(D;S))zdx,
e—0
Q Qj,e



where
Q= Q\B(Sj, ¢).
Since ® ;S is regular in 2 ., we can apply Green’s formula and obtain

/A(q)ij)ZdXZ—/V(@ij)~Vde

Qje Qe

0
+ / 8—v(<I>ij)z do 4.5)
T\B(S;,&)
2

1 1 0;
—582 cos | z(e,0;)do;.
0

Let us show that the last term tends to zero as ¢ tends to 0. Indeed using (4.3), we may
write

2

27
1 0; 1 i
€7 | cos > z(e,0j)dfj =2 | cos > zr(e,0;)do;
0 0
27
2 (0
+ ecj(z) [ cos > do;.
0

Since W2P(Q) — C(Q), zr (e, 0 ;) can be uniformly estimated in ¢ and therefore

>

2
L1 0;
lim e2 [ cos | = ) z(e,0;)do; =0.
e—0 2

0

Coming back to (4.5) and passing to the limit in ¢ — 0, we find that

/A(CDij)zdx = —/V(QDij) -Vzdx (4.6)
Q Q
Bl
+ a(@ij)Z do.
r
The identities (4.4) and (4.6) lead to (4.1). O

Remark 4.3 The identity (4.1) of the previous Lemma is well-known (see Theorem
1.5.3.11 of [9]) but the difference stays on the assumption on v and on the fact that in
the right-hand side an integral can be used instead of a duality bracket.



Now given u € D(A), we are interested in z € H'(2) solution of

Az =0 in €,
z=0 onIp,
%:O on F}V, @7
Z=1u onFZN.

This is equivalentto z = w +u, wherew € V := {w € HY(Q):w=0o0n FDUFJZV}
solution of

/Vw-dex:—/Vu-dex,VweV.
Q Q

This means that w € V is a weak solution of the problem

Aw = —Au in Q
w=0 onFDUFz,
g—‘\‘j:O onF}V.

In other words, w belongs to

9
D(Lpiy) = (v e E(A; L2Q) NV a—” =0 surTL}.
V

Lemma 4.4 There exists oy > 0 (small enough and depending on Q) such that any
v € D(Apir) admits the splitting

n
V=g + D cj)®;S;,
j=1
where cj(v) € R and vg belongs to W2P(Q), with p = % + o™ forall a* € (0, ay).

Proof 1t suffices to apply Corollary 4.4.3.8 of [9] (see Remarks 4.4.4.15 and 4.4.4.15
of [9]) with p < 2 such that

1 2 . [ T T ]
—<2—— <minjy—, s
2 P W 2Wmixed

where wy,ixeq 15 the maximal angle between the edges of I‘}\, and Flz\, that is < 7 due
to our assumption (1.4). O

10



Corollary 4.5 Let z be the unique solution of (4.7) with u € D(A) and let v €
D(Apir). Then we have

0
/Auzdx = —/Vu~Vzdx+/a—uZdG, 4.8)
v
Q Q r
ov
/szdx = —/Vv -Vzdx -l—/a—zdo. 4.9)
v
Q Q r

Proof Asu € D(A) it admits the splitting (4.2), and by the previous Lemma, z admits
the splitting (4.3) with

Zg=upr+twrandc;(z) =cj) +cjlw), Vj=1,...,n,
when
n
W = WR —I—ch(w)@ij.
j=1

Hence, the identities (4.8) and (4.9) are proved exactly as in Lemma 4.2.

5 Proof of the main result

For a strong solution u, we can derive (3.1) and by Green’s formula (see Lemma 4.2)
we obtain

E'(t) = —/a(x)u,zdx - /b(x)u,zda <0. (5.1
Q [‘12\]

Then the energy is nonincreasing and furthermore

T T
E(S) — E(T) =//a(x)u,2dxdz+//b(x)u,2da dt, V0<S<T. (52)
S Q

2
SrN

Now we use the piecewise multiplier method (see [12]) but adapted to our singular
setting. For any extremity S; of a crack, we consider a cut-off function 7;, such that
n; = 1 near o; and with support in a neighbourhood of o;. We also assume that the
support of 77; does not meet the support of n; if i # j.

Setting

m) = [1-2 0 | x = xo),

j=1

11



as multiplier we take

1\7I(u)(x) =2 Z(x —Spn;x) +mx) | - Vulx) + u(x).
j=1

Lemma 5.1 Ifu is the strong solution of problem (1.1), then u verifies
T

2/E(t)dt+//|Vu|ZZ(x—Sj) Vi dxdt

0

0

T
//qu| Z(x—xo) Vi, dxdt
0

Q j=1

n

T T
onj du ou du dn; Ju
) - 2 22 T dxdi—2 - e 71
/ / (%% = xoc) < dx; 0x; Dk * / / Ok = Sk g s o
0 Q j= 0 o /=1

ou ~ !
—/EM u)dx //( Z%(x —S;) - Vnjdxdt
Q J=

T 2 n T
//(2_”;) Z(x—xo)~andxdt—//a(x)2—lzﬁz(“)dtdx
0 Q Jj=1 Q0
T
9
+// Z(X_SJ)UJ)‘F’” 'V(a_l:)2d0dt
0 r
T
/

j=1

T
~ ad
— / m 4+ njx —S;) ~U|Vu|2dadt+//a—uudadt
v
r

j=1 0 'y

T n
2 “\m (x—=S)1|-
+ // 5 m+ZnJ(x Si) | - Vudodt
0T j=l
T

~|—//oe|u|2dadt =0. (5.3)

Orlzv

Proof We use the multiplier method, namely we multiply (1.1) by M (u) and integrate
by parts.

T

eTransformation of // —Au ]\7[(14) dxdt.
0 Q

12



For any extremity S; of the crack o; and u strong solution of problem (1.1), we get

/—Au nj(x —S8;) - Vudx

Q
/a” (1 ) )d /a”( S;) - Vud
= | —— X x— [ —njx—38;) - Vudo
0x; 0x; nj ¥k = Sjk 81)77] /
Q r
ou d(xx — Sjk)  Ou / du 0n; ou
= — . d — (= Six)—d
/8x, 0x; JBxk o 0x; 0X; (X Jk)axk *
Q Q
/( Spyn Oy /a”( S}) - Vud
Xk — —(— —nix —35;) - Vudo
e k) e ax;  9xg v J
ou 8r;] Bu
\% d —
/I ul? nj X+/(Xk jk)axl ox; axk
—§/|Vu|2div((x—Sj)17j)dx
1 5 ou
+§ nj(x—38;)-v|Vul“do — nj%(x—Sj)-Vuda. 5.4

r r
Furthermore Green’s formula yields

omy du Ou

~ 1 .
/—Aum-Vudx = ——/|Vu|2d1v(m)dx+ R Tk
2 0x; 0x; OXxk
Q Q Q
1 ~ 2 3M~
+— [ m-v|Vu|"do — | —m - Vudo,
2 av
r
and hence
T
//—Auﬂ(u)dx
0 Q

T

T
omy du Ou
2
//qu| div Z(x—S)nj)+m dxdt+2//8—XI3—xladxdt
0 J=1 0 Q

T

n

+2//|vu|2zn,-dxdt

0 Q j=1

T 8 5 T

u dn; o 2
2 —8; U O xdr Vu|>dxdt

* //Z(xk ax, 0x; Oxy +//| u[*dx

0 0 Q

13



T

T n
_ 9
+// i + z 1nj(x_s'j) ~v|Vu|2dadt—//a—‘bjuda dr
0T J=

0 'y

(=5

T n
u
) 2~ Sy — S| )
// ” m+ E nj(x—3S8;)|-Vudodt
0T j=1

Asdivin = (x — x0) - V(1 = 3211 nj) +2(1 = 37}, n;), we may write

T n T
—//|Vu|2div D= Spm)) +m dxa’t:—2//|Vu|2dxdt
0 Q j=1 0 Q
T n A n
—//|Vu|22(x—Sj)-andxdt+//|Vu|ZZ(x—xo)-andxdt,
0 Q j=1 0 Q j=1
and
I o du 9
2//ﬂ—”—”dxdz
dx; 0x; 0xi
0 Q
T n T n
on; du ou 5
-2 — = dxdt +2 1— ) IVu2dxdt.
//(Xk XOk)Zaxiaxiaxk rar // , nj | IVul*dx
0 Q Jj=1 0 Q j=1
These identities lead to
T
//—Auz\}(u)dx
0 Q
T T n
=—2//|Vu|zdxcif—//IVMIZZ(x—Sj)~andxdt
0 Q 0 Q j=1

T n
+//|Vu|22(x—x0)-andxdt
0 Q

j=1

N

T n T
on; du du // 2
2 - U D axdi+2 [ (1= n))IVuPdxdi
2 [ [ W0 2 G 2 [0 vy
0 Q - 0 @

j=1

14



+

T T

du dn; 0

2/ (o — Sji) o S udxdt—}—//lvmzdxdt
0x; dx; 0xk

0 1 0 Q

T

+

Jj=
n T
~+Z (x—S8)) -v|Vu|2d6dt—//8—uudodt
j:]n] J o0

F 0 T'n

T n

u |

-2 3 m+2nj(x—Sj) -Vudodt,
0T j=1

and after some elementary calculations, we obtain

T
//—Aulq(u)dx
0 Q
T T
//qu|ZZ(x—Sj) vn,dxdt+//|W| Z(x—xo) Vi jdxdt
0 j=1 0 j=1
r an; du 9
anj du u
2 — dxdt
+ //(xk ka)Z 0x; 8x, Bxk
0
rrd du an; 0 r
uon; ou 2
2 — Six)— ——dxdt Vul“dxdt
+ //Z(xk g +//| ul2dx
0 o /=!I 0 Q
T

T
n
~ Rl
+// m—i—/:Elnj(x—Sj) -v|Vu|2dadt—//a—zudadt

r 0 'y
T au n
-2 — |m (x =S8 | -Vudod:. 5.5
// . m+]§nj(x |- Vudo (5.5)
0 r =

]

Remark 5.2 In the case ﬁ NTp = {s1, sp} treated in [2] (but excluded here), we
would get

T
//—AuM(u)dx
0 Q
T n T
—//|Vu|22(x—Sj).Vr)jdxdt+//|Vu|22(x—x0) Vi dxdr
0 Q j=1 0 Q j=1

15



T
on; du Ju
2 — —+ — ——dxdt
+ //(xk ka)Z 0x; 0x; 0xx o
0 Q

T T
. du an; 9 )
+2 (o — Sjk)=— ——d dt + |Vu|*dxdt
0x; 0X; 0Xy
0 o J/=! 0 Q
T " T ;
u
i (x —8;) | - v|Vul’dodt — —udo dt
+ +j§n,(x )| -vIVul“do //8vu o

0 'y

[ob)
<

F

T
-2 — | m - S -Vudodt.
// 5 m—i—an(x i) udo
0T

<

12

(o8]

T
u ~
eTransformation of / / — M (u)dxdt.
Q0

Integrating by parts in time, we have

T
9%u
njm(x —8;) - Vudtdx
Q0

/ Bu( S -Vud // ( )814 d u
= i—(x —8j)-Vu x X —
Ly J nj @ = SiK) 5o on

Q

)dtdx

du T ] au\>
:/nja—(x—Sj)-Vudx‘o +§//(8_t) div(n;(x — §;))dxdt
0 Q

. 2
1 ou
—5 n/(x—Sj)v E de[,
0

and then

T
9%u _
ﬁm - Vudtdx

Q0

T
ou _ dud ( du
= [ —m-Vu dx — my—— | — | dtdx
ot ot dt \ 0xi
0 Q

Q

16



T T
du _ T 1 3 N 1 N u\>
= / —um -Vu dx‘ + —//(—u)zdivmdxdt — —//m ] o dodt.
ot 0o 2 ot 2 at
0 Q 0T

Similarly

T
82
//W (w)dtdx
Q0
0 rof 9 "
u ~ u . ~
:/EM(u)dx‘o +//(E)2dw /Z%(X—S,)njwrm dxdt
Q .:
T 5 T )
u u
—//(E)dedt //(Z(x—sj)n,wm) (E)zdadr,
0 Q or J=I
and

T ) n
//(3—?) div [ D (x = Sj)n)) + i | dxdt
0 Q

=1

j=1
it then follows that

T
du ~ T A\ <
// > M (u)dtdx _/a—b;M(u)dx’O +//(a—b:) /Z;(x—sj).vnjdxdz
0 Q J=

Q
T

_O/TQ/( )ziu —x0) - vn,dxdt+//( ) dxdt

0
T n
—// Z(x—Sj)nj—I-ﬁ ~v(
0o r

j=1

(o3

u
t

2
) dodt. (5.6)

(o5

We deduce the requested identity from (5.5) and (5.6).
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Setting

T n
/qu| Z(x—S) Vi, dxdt — //|Vu|22(x—x0)~andxdt
Q 0 Q j=1
T

T
ou ~ T i\ <
vaul - [ . e s

(x —x0) - Vnjdxdt — //a(x)—M(u)dtdx

/-\
|Q.3
~ | &
v
[ ]
3

and T . s
~ d
/ ( (x—=Sj)n;+m v(a—b;) dodt
0 j=1
T
// ~+Z (x—S)) v|Vu|2dodr+//a—”udadt
i ov
0or 0 'y
T
) Ou ~+Z (x—S) | - Vudodt
m _ )
y nj(x udo
0r j=1
T
+//a|u|2dadt
0 I‘[ZV
by Lemma 5.1, we get -
2/E(t)dt:11+12.
0

We now need to estimate appropriately /1 and I>.
The values of I on I'p, F}\, and FIZV, are respectively

T
IZ(FD)z//(x—x0)~v|Vu|2dadt

0 Tp

18



T n

du\>
—Smi+m|-v{—) dodr <0,
+// Z(x A/)77‘/ +m v (31‘) odr =

0 I'p j=1
L(I'y) =0,
and
‘ - au\>
Iz(r]zv):// Z(x—Sj)nj +m U(E) dodt
02 VI
T n T 5
—// n~1+zn,-(x—sj) ~v|Vu|2d0dt+//£ud0dt
oy b7 0T}
T n
ou |
+2 5 m+znj(x—sj) - Vudodt
02 j=l
T
+//a|u|2dadt.
0 FIZV

Remark 5.3 If the cracks are not straight we cannot garantee that IZ(F}\,) =0, in the
same manner if I'p meets one crack, then />(I"p) is no more non positive.

Lemma 5.4 Let u be a strong solution of problem (1.1). There exist C > Qand g > 0
such that for every ¢ €]0, o[

T T
c
L(r3) 58/E(t)dt+; E(0)+//a|u|2dadt , VT >0. (5.7)

0 FIZV
Proof Setm =i + > i_ nj(x — S;), then

r 2
IQ(F,ZV)://(—m~v|Vu|2+m~v(z—I:) —(au+b2—1:) M(u))dadt

OFIZV

T
+//a|u|2dadt.

0F12\1
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On I“Izv,wehave
mov(x) = [1=> nj) | (x —x0) - v(x) + D0 (0)x = $)) - v(x),
j=1 j=1

and we deduce by the hypotheses (1.3) and (1.4), that there exists a constant mqy > 0
such that

m-v(x) >mg, Vxe FIZ\,.
By using Young’s inequality, we obtain

T
b 2b  1blleb\ [ 9u\>
IZ(F%V)S// ||m||oo+II loollmlla +|| lloo Y 4 eu? Vdodr
£ 2¢ ot

2
OrN

T
+// (28—m-v))|Vu|2d0dt

OFIZV

where C is a positive constant. The previous estimate for ¢ < =2, allows to deduce

that

T
b N IAWEIAS
IZ(F%V)S// [lm|loc + [1Plleo ]l + Ll & + eu® |dodt
e 2e ot

2
OrN

T
C
+—//a|u|2dadt.
&

0[‘12\1

As b is uniformly positive definite, there exists a constant ¢y > 0 such that

r b b\ [ou)> r au\ 2

// l]oo 4 Wtlloch B (91 dadtfc—l//b MY dodt
e 2¢e ot £ ot

013 02

T
< —C—I/E/(t)dz
&
0

L E©0).
I
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By applying Poincaré’s inequality, we get

/ u’do < cys/qulzdx

l-\2
< 2c6E(1),
where ¢ is a positive constant independent of 7. These three estimates imply (5.7). O

For all j, we consider a cut-off function 77; such that 7; = 1 in supp n; with support
in a neighbourhood of supp 7;.
By setting O = U?leupp njand O’ = U;'.leupp 17;, we have the following result:

Lemma 5.5 Let u be a strong solution of (1.1). Then, there exists C > 0 such that for
allT >0

T

T
//|Vu|2dxdt§C E(O)+// (aa_u)2+u2 dxdt
0 0 0 o !
T
g
0

T

9 2

u 2

/ (—) dadt+/ / uldodt
a1

n N

o'nr3 0 onry,
(5.8)

Proof Multiplying (1.1) by 77;u and integrate by parts, we obtain

T
A =//—Auﬁjudxdt
0

Q
T T
~ ou _
=//Vu~V(nju)dxdt—//a—njud0dt
v
0 0o r
T T T ;
=//uVu-Vﬁ}dxdt+//|Vu|2ffjdxdt—//—uﬁ}udodt
v
0 0 Q or
T . T
://|Vu|2;7~,dxdt—§//usz,dxdz
0 Q 0 Q
T 5 | T
u _ 2 a1
//5njudodt+§// Jdadt
0T 0
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T T
~ 1 ~
://|Vu|217.,-dxdt—E//uzAnjdxdt
0 Q 0 Q
T

~ 1 ,07;
+ ((au + bug)nju + -u"—=)dodt.
2 dv

0[*12V

and

1f c 9 T (o)
’ - u _ u\ -
=§//u A an dxdt—/Eanudx‘o +//(5) njdxdt
Q 0 Q

0

T

//a” ddt+//(+b) L2900 doar,
aat 77]14 X odu U 7’]]14 21/! 8

0 Q

0[‘2

Hence by Young’s and Cauchy—Schwarz’s inequalities, we obtain (5.8). O

In order to obtain the requested integral inequality, we need to estimate the terms
fOT Jor u?dxdt and fOT Jorar: udodt in (5.8), as well as the term fOT Jp2 alul*dodt
N N
in (5.7). For that purposes, we prove the following Lemmas.

Lemma 5.6 Let u be a strong solution of problem (1.1). Then there exists a positive
constant C such that for all T > 0 and ¢ € (0, 1), we have

T

T T
//auzdxdt gg E(O)+//au2dadt +8/E(t)dt. (5.9)
0

2
Q 012 0
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Proof For all t > 0, consider the problem: find z = z(¢) solution of

Az =au in Q
z=0 onI'p,

f’—f):O onI'y.

This problem admits the weak formulation: let z € HllD (£2) be the unique solution of
/Vz -Vwdx = —/auw dx, Yw e Hllp(Q). (5.10)
Q Q

Taking w = z in (5.10) we obtain

/|Vz|2dxdt = —/auzdx.
Q Q

By Cauchy-Schwarz’s and Poincaré’s inequalities, this implies that

/|Vz|2dxdt < Cl/auzdx < GE(1).
Q Q

In particular, again using Poincaré’s inequality and a trace theorem, we get

121172y < C3llVaull}sq) < C4E®), (5.11)
1211722 = CsllVaullz g, < CoE(®). (5.12)

Differentiating (5.10) with respect to t, 7’ is solution of the problem

A7 =au' inQ

7=0 onIp, (5.13)
%—fj =0 only,

then the above considerations lead to

121132 < €1 /au/zdx < —E'(0). (5.14)
Q

Multiplying (1.1) by z, we obtain

T

92u
m — Au =+ auy dedt = 0 (515)
Q

0
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We now modify the first two terms of this left-hand side. Since u# and z belong to the
domain D(A) of A, by Lemma 4.2 we have

T T T 5
—//Auzdxdt =//Vz-Vudxdt—//
0 Q 0 Q (U

Consequently, by (5.10) (since u belongs to HllD (£2)) and the boundary conditions
satisfied by u, we get

<

zdodt.

(o8]

Vv

T T T ; T
—//Auzdxdt = —//auzdxdt+//b8—l:zdadt+//auzdadt.
0 Q 0 Q 0 rlzv 0 r}zv
For the second term in (5.15) by integrating by parts in time, we directly have
r du 0
u oz
—zdxdt = | —zdx| — — —dxdt.
// z* / wds], .//mm
0

These two identities in (5.15) lead to

T T T

d T ou d 0
//auzdxdt :/—Mzdx‘ —/ —M—Zd dt +//a—uzdxdt

at 0 ot ot ot
0 Q Q 0 Q 0 Q

T T

ou
—i—//bgzdodt—i—//omzdodt. (5.16)
0 F12V 0 [‘%}

Using Young’s inequality and the previous estimates we get

T 9 T c T
U oz 1 ,
——d dt< Et)dt — — E'(t)dt
//ata o ‘9/ ® 28/ ®
0 Q 0 0
c T
< —lE(O)—l—e/E(t)dt.
2¢
0
T 5 ) T 5 T
u u
b—zdodt < — b(—)?dtd b 2dtd
//‘mzo _%//(m> U+ﬂﬂm//z o
0[‘12\1 O[‘12v 0F12V
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T
< iE(O) —i—Cs/E(t)dt.
2¢e

T T 5 T
ou lall co ou 2
a—zdxdt al— ) dxdt +¢ z°dxdt
ot 2¢e ot
0 Q0 0 Q

Q

IA

IA

C éE(O)—l—e/E(t)dt
0

T
—/a—uzdx‘ = —/%(T)Z(T)dx—i-/g—bt{(O)z(O)dx

at 0
Q Q Q
1 2 2 1 2 2
< % u;(T)dx+e | z (T)dx+£ u; (0)dx +¢e | z°(0)dx
Q Q Q Q
< CE(0).
T T T
//auzdadt < ”O;ﬂ//auzdadt—i—s//zzdodt
&
0 r% r% 0 0 r%
. T T
<C —//omzdadt—i—s/E(t)dt
&
r3 0 0
These five estimates in (5.16) lead to (5.9). m|

Lemma 5.7 Let u be the strong solution of problem (1.1). Then there exist a positive
constant C and go > 0 small enough such that for all T > 0 and ¢ €]0, o[, we have

T
uldodt < —5 E(O)//auzdodt +8/E(t)dt (5.17)

o'nry, rz o 0

St~

Proof By a trace theorem in O’, there exists C > 0 such that

/ u*do < C|| u||
i)

2
o'nry,
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Now using an interpolation inequality (see for instance Theorem 1.4.4.3 of 7), we
deduce that there exists K > 0 such that

/ o < C (Nl g, + K2l b))
o'nr
for all ¢ > 0. Setting n = Ce?, we find that
| o< [1vuPdx s eniuidsg,
o'nr o’

for all n € (0, 1).
Integrating this expression in (0, 7) and using Lemma 5.6 (estimate (5.9)), we
obtain

T T

T T
c .
/ / uldodt < n/E(t)dt+Cr;_3 = E(O)+//au2d0dt +e/ E(t)dt
. . & .
0 0/01"]2\/ 0 1"12v 0 0

forall n € (0, 1) and all ¢ € (0, 1). This estimate is trivially equivalent to
T T
C C
/ / Wdodt < (n n —j)/E(t)dt + —E0),
n &n
0 onr3, 0
forall n € (0, 1) and all ¢ € (0, 1). By chosing ¢ such that

Ce
==

or equivalently

we obtain

~

T T
\ c .
/ / uldodt < 277/E(t)dt+ = [EO+ / /auzdadt
J . : n
0

2 2
o'nry, 0 rz o

for all n € (0, 1) small enough. This proves (5.17) by renaming 2n = ¢. O
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Lemma 5.8 Let u be the strong solution of problem (1.1). Then there exists a positive
constant C such that for all T > 0 and ¢ €]0, 1[, we have

T

T
//auzdadt < EE(O)—i—e/E(t)dt. (5.18)
0

0[‘12\1

Proof We proceed as in [10] but here by taking into account the presence of cracks.
Namely for all + > 0, we consider z = z(t) € H 1(€) solution of (see section 4)

Az=0 inQ

z=0 onIp,

9z 1 (5.19)
5o=0 onTly,

z=u onT}%.

This is equivalent to z = w +u, wherew € V = {w € H'(Q) : w=0o0onTp UF12V}
solution of

/Vw-dex:—/Vu~dex, Yw e V.
Q Q

This identity is equivalent to

/Vz Vwdx =0, YweV. (5.20)
Q

Taking w = z — u, we find in particular

/Vz-V(z—u)dx:O,
Q

or equivalently

/Vz~Vudx=/Vz'Vzdx20. (5.21)
Q Q

Let us now show that z also satisfies

vy 5
/f-de = —/zﬁdr, Vf e L (), (5.22)
Q r
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where vy € V is the unique solution of

/va-dexz/fwdx, Yw e V.

Q Q

Indeed from (5.20) we may write

/va~Vzdx =0.
Q

As z is solution of (5.19) with u(t) € D(A) and vy belong to D(Ap;,) by Green’s
formula (see Corollary 4.5), we deduce that

0
—/Avf-zdx+/zidF:O.
‘ v

Q r

This proves the identity (5.22) since Avy = —f.
In the identity (5.22) taking f = z, we may write

3 3

/|z|2dx=—/zﬁdr=—/uﬁdr,
v v

Q r 1“}2\]

: _ 2 dug
since 7 = u on FN, T

we obtain

=0Oon lev and z = Oon I'p. By Cauchy—Schwarz’s inequality

av
2 z
/|Z| dx < ” M” LZ(FIZV) H 8_]) LZ(FIZV)- (523)
Q
By Lemma 4.1 we have for all « > 0 small enough
gl W2p(Q) = K| zl| L2(Q)» (5.24)

for some positive constant K when p = % + o*. This estimate, a standard trace
_1
theorem and the embedding wi=pP (1"]2\,) > Lz(sz\,) lead to

asz
ey = | 5, | rap = Killzleg),

v,
av

for some positive constant K. Inserting this estimate in (5.23) we arrive at

/ l22dx < Co / udr,
Q FIZV

28



where Cj is a positive constant. Since z’ is solution of problem (5.19) with u’ instead
of u, the above arguments yield

/|z’|2dx < Co/ |u'|>dT.
Q

2
l‘N

Multiplying the first identity of (1.1) by z and integrating on 2 x (0, T'), we obtain

/ z(u” — Au + au')dxdt = 0.
Qx(0,7)

Applying Green’s formula (allowed by Corollary 4.5) and taking into account the
boundary conditions in (1.1), we get

(zu” +Vz-Vu+au'z)dxdt + / (au + bu')udodt = 0.

Qx(0,T) I'%%(0,T)

Integrating by part in ¢ and using (5.21), we obtain

/ alulPdodt < — / buu'dodt + / v dxdt

Iy x(0.7) 2 x(0,T) Qx(0,7)
T
— / au'zdxdt — /zu/|0.

Qx(0,T) Q

The rest of the proof is as in the proof of Lemma 5.6 using several times (5.2), (5.25),
(5.25) and Young’s inequality. O

Remark 5.9 Lemma 5.7 is only necessary if « is not uniformly bounded from below
in O'N 1"12\,, but according to our assumption this could occur for instance in the case
when int I'p # .

Proof of Theorem 3.1 By Lemmas 5.4 and 5.8 we have

L = L(T'}) + L(Tp) + L(T})
< L(T%)
T

< %E(0)+8/E(t)dt,
0
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recalling that I(I'p) < 0 and Iz(F ) =0.
Applying Young’s inequality, we obtain

T

r 2
[J((Ge) o Jasan £ [ oo (5)
L <C — ) +|Vul|® ydxdt + — a(x)| — ) dxdt
e dt
0 Q
T
e//u2dxdz+CE(0)
Q
T

0
r du\> C
< c//((a—':) +|Vu|2)dxdt+;E(O)+£/E(t)dt.
0 O

0

(=]

_I_

We know that

T

2/E(l)dt <L+ I,
0

hence, from Lemmas 5.1, 5.6 and 5.7 we obtain that there exists C > 0 such that

T T

2/E(t)dt < 8%E(0)+5/E(t)dt,

0 0
for all ¢ small enough. By choosing ¢ < 2, we get

T

/ E(Wdt < CIE(0),

0

where C7 is a positive constant independent of 7. Since our system is invariant by
translation we get for all § > 0,

S4+T
/ E(t)dt < CL1E(S)

[*5)

and by letting 7 tend to infinity we have shown that the energy of our system satisfies
(3.2). Hence Lemma 3.3 allows us to conclude the exponential stability of (1.1).
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