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SPECIAL LAGRANGIAN 4-FOLDS WITH SO(2)⋊ S3-SYMMETRY IN

COMPLEX SPACE FORMS

FRANKI DILLEN, CHRISTINE SCHARLACH, KRISTOF SCHOELS, AND LUC VRANCKEN

Abstract. In this article we obtain a classification of special Lagrangian submanifolds
in complex space forms subject to an SO(2)⋊ S3-symmetry on the second fundamental
form. The algebraic structure of this form has been obtained by Marianty Ionel in
[7]. However, the classification of special Lagrangian submanifolds in C4 having this
SO(2)⋊S3 symmetry in [7] is incomplete. In this paper we give a complete classification
of such submanifolds, and extend the classification to special Lagrangian submanifolds
of arbitrary complex space forms with SO(2)⋊ S3-symmetry.

1. Introduction

A space (N, J, g) is called a Hermitian manifold with complex structure J and Rie-
mannian metric g, if g(JX, JY ) = g(X, Y ) for all X and Y . The (0, 2)-tensor ω(X, Y ) =
g(X, JY ) is its symplectic form. If ω is closed, then (N, J, g) is said to be a Kähler man-
ifold. In this case the Levi-Civita connection D of g satisfies Dω = 0 as well, see [11]. A
complex space form is a Kähler manifold for which the curvature tensor is given by

(1) R(X, Y )Z = ǫ (X ∧ Y + JX ∧ JY + 2g(X, JY )J)Z,

where ǫ is a real constant and X ∧ Y is defined as

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y.

Every complete, simply connected complex space form of dimension n with constant
holomorphic sectional curvature 4ǫ is isometric to one of the following manifolds:

(1) the standard complex space Cn when ǫ = 0,
(2) the complex projective space CP n(4ǫ) when ǫ > 0,
(3) the complex hyperbolic space CHn(4ǫ) when ǫ < 0.

Because we consider submanifolds of a complex space form locally, we can restrict our-
selves to those ambient spaces. By rescaling, we can even assume that ǫ = 0, 1,−1.

A Lagrangian submanifold M of a Kähler manifold (N, J, g) is a submanifold such that
ω vanishes identically onM and the (real) dimension ofM is half the (complex) dimension
of N , see [1]. This implies that J induces an orthogonal isomorphism between the tangent
and the normal bundle on the submanifold. The Gauss formula is given by

DXY = ∇XY + h(X, Y ) = ∇XY + JA(X, Y ),

where A = −Jh defines a symmetric (1, 2)-tensor on the submanifold, and the Weingarten
formula is given by

DX(JY ) = J(∇XY )−A(X, Y ).

It is easy to see that the cubic form C, defined by

C(X, Y, Z) = g(A(X, Y ), Z)
1
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is totally symmetric. For Lagrangian submanifolds of complex space forms, the equations
of Gauss and Codazzi simplify to

R(X, Y )Z = ǫ (X ∧ Y )Z + [AX , AY ]Z,(2)

∇A is symmetric.(3)

The following theorem holds, see [3] and [5].

Theorem 1.1. Suppose (Mn, g) is a Riemannian manifold equipped with a symmetric
and g-symmetric (1, 2)-tensor A such that (2) and (3) are satisfied for some constant ǫ.
Then for every point p ∈ M there exists a neighborhood U and a Lagrangian isometric
immersion φ : U → N2n(4ǫ) into the complex space form N2n(4ǫ) such that g and JA
are induced as first and second fundamental form. Such an immersion is unique up to
isometries of the ambient space.

We focus on a particular form of A assuming that there is a pointwise G-symmetry of
A (or equivalently of the cubic form C), where G is a subgroup of the special orthogonal
group SO(n). We say that A has pointwise G-symmetry at p if for all tangent vectors
X, Y in p, and all g ∈ G the relation A(gX, gY ) = gA(X, Y ) holds (or equivalently
C(gX, gY, gZ) = C(X, Y, Z) for all X, Y, Z). Furthermore, we impose a minimality con-
dition on A at p, so for every X at p, we assume that Tr(AX) = 0. These manifolds are
interesting, since in Cn the minimal Lagrangian submanifolds are precisely the special
Lagrangian submanifolds of Cn as introduced by Harvey and Lawson [6]. If a special
Lagrangian submanifold of Cn has G-symmetry at every point, for the same group G,
then a classification result for the dimension equal to 3 has been obtained by Bryant [2].
An explicit classification for special (we also use the word “special” for “minimal” in case
c 6= 0) Lagrangian submanifolds of complex space forms with pointwise symmetric cubic
form is not yet done, but can be easily obtained from a similar classification for affine
spheres in [13].

In the present paper we consider the 4-dimensional case. In particular we consider
special Lagrangian 4-folds in complex space forms with pointwise symmetry. The shape
of the (1, 2)-tensor A, invariant under subgroups of SO(4), has been described by M. Ionel
in [7]. In the same article, the author classifies special Lagrangian 4-folds of C4 according
to their symmetry groups. However, the classification in case the symmetry group is
given by SO(2)⋊ S3 in that article is incomplete; several possible subcases including the
most general one is omitted. In the present article, we give a complete classification of all
special Lagrangian 4-folds in any complex space form having this particular symmetry.
This settles the problem for SO(2)⋊ S3-symmetry for all ǫ. The classification for other
symmetry groups remains open if ǫ 6= 0.

The SO(2)⋊ S3-symmetry implies that A can be expressed as

(4)

A(X1, X1) = rX1, A(X1, X2) = −rX2, A(X1, X3) = 0, A(X1, X4) = 0,
A(X2, X1) = −rX2, A(X2, X2) = −rX1, A(X2, X3) = 0, A(X2, X4) = 0,
A(X3, X1) = 0, A(X3, X2) = 0, A(X3, X3) = 0, A(X3, X4) = 0,
A(X4, X1) = 0, A(X4, X2) = 0, A(X4, X3) = 0, A(X4, X4) = 0,

in a well-chosen local orthonormal frame {X1, X2, X3, X4}. In this expression r is a strictly
positive function. The SO(2)-symmetry is given by the free rotation in the {X3, X4}
plane and the S3-symmetry is essentially obtained by rotations over an angle 2π/3 in the
{X1, X2} plane and reflections in the {X1, X4} plane. We can remark that the form of A
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is exactly that of Lagrangian submanifolds attaining equality in Chen’s inequality, see [4]
and [5].

In order to list the different possible subcases, we introduce distributions

N1 = span{X1, X2}, N+ = span{X1, X2, [X1, X2]}, N2 = span{X3, X4}.
We will see that N2 is always integrable. We obtain:

(1) If N1 = N+, then the submanifold is a double warped product R×f R×gN
2 where

N2 is a minimal Lagrangian submanifold in an appropriate space form.
(2) If N1 ( N+ and N+ is integrable, then the submanifold is a single warped prod-

uct R ×f N
3 where N3 is a special Lagrangian 3-fold with S3-symmetry in an

appropriate space form.
(3) If the smallest integrable distribution containing N1 is TM , then for this final case,

we do not obtain an explicit expression for the immersion, but we will rewrite the
equations (7) to a system of partial differential equations in 2 coordinates out of 4
coordinates defined on the submanifold. Here, techniques will be used similar to
those in [8].

When we consider the different cases, we will assume the defining conditions hold on
an open neighborhood of the considered point.

2. Preliminaries

2.1. Complex space forms. We briefly recall the basic properties of Cn and show how
Lagrangian submanifolds of CP n and CHn can be lifted to subsets of Cn+1.

Consider the complex vector space Cn. Its elements can be written as n-tuples of
complex numbers, so they are given as

~z = (z1, · · · , zn) , zj = xj + iyj , xj , yj ∈ R.

Through the map

φ : Cn → R2n : (z1, · · · , zn) → (x1, y1, · · · , xn, yn)
the space Cn is a real 2n-dimensional manifold. The multiplication with the imaginary
unit i translates to a linear map on R2n given as

i (x1, y1, · · · , xn, yn) = (−y1, x1, · · · ,−yn, xn) .
and its derivative J is given as

J∂xk
= ∂yk ,

J∂yk = −∂xk
.

This squares to −I and thus defines a complex structure on Cn. On Cn there is also a
Hermitian form given by

s(~z, ~w) =

n
∑

j=1

zjw̄j =

n
∑

j=1

(xjuj + yjvj)− i

n
∑

j=1

(xjvj − yjuj).

The real part, which can be denoted as 〈~z, ~w〉 defines the Euclidean scalar product on R2n

and induces a natural Riemannian metric on Cn. We can see that J is an isometry and
the induced Kähler form, which also coincides with the imaginary part of the Hermitian
form, is closed. These structures make Cn into a flat Kähler manifold.
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The manifold CP n can be modeled as the quotient S2n+1/S1, where

S2n+1 = {(z0, · · · , zn) ∈ Cn+1|
n
∑

i=0

|zi|2 = 1}.

The equivalence is given by

~z ∼ ~w ⇔ ∃φ ∈ R ∀j ∈ {0, · · · , n} : zj = eiφwj.

So the unit sphere S2n+1 is the preimage of the Hopf fibration

π : S2n+1 → CP n : ~z → [~z] .

On S2n+1 ⊂ Cn+1 the complex structure J induces a contact structure and the stan-
dard metric on Cn+1 induces a Riemannian metric. The metric on CP n that makes π a
Riemannian submersion has constant holomorphic sectional curvature 4. An immersion
φ : M → S2n+1 is then said to be C-totally real or horizontal if iφ is orthogonal to the
submanifold. It can be shown that every minimal C-totally real submanifold of S2n+1 can
be projected onto a special Lagrangian submanifold of CP n through π and conversely
that a special Lagrangian submanifold in CP n has a 1-parameter family of mutually iso-
metric horizontal lifts as a minimal C-totally real submanifold in S2n+1. So in order to
classify special Lagrangian submanifolds in CP n, we can consider minimal C-totally real
submanifolds in S2n+1 ⊂ Cn+1, see [12]. For those submanifolds, the Gauss identity is
given as

(5) DXY = ∇XY + JA(X, Y )− 〈X, Y 〉φ,

where D is the Levi Civita connection of Cn+1.
Similarly, the space CHn can be modeled as H2n+1/S1, where

H2n+1 = {(z0, · · · , zn) ∈ Cn+1
1 ||z0|2 −

n
∑

i=1

|zi|2 = 1}.

The equivalence relationship determined by S1 is the same as the one used in the projective
space. The ambient space Cn+1

1 is essentially the space Cn+1, but equipped with the scalar
product

〈~z, ~w〉1 = ℜ
(

n
∑

j=1

zjw̄j − z0w̄0

)

.

The complex structure is still obtained through multiplication with the imaginary unit
i and induces a Kähler structure on Cn+1

1 . This metric induces a Lorentzian metric on
H2n+1 and a metric of constant holomorphic sectional curvature −4 on CHn. Similar to
the projective case C-totally real submanifolds φ : M → H2n+1 can be defined having iφ
as a normal. Each minimal C-totally real submanifold corresponds to the horizontal lift
of a special Lagrangian submanifold of CHn. The Gauss identity is given as

(6) DXY = ∇XY + JA(X, Y ) + 〈X, Y 〉φ,

where D is the Levi Civita connection of Cn+1
1 .
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2.2. Structure equations. We can return briefly to the equations (2) and (3). We
can choose an orthogonal frame {X1, X2, X3, X4} corresponding to (4) and define the
components Γk

ij and A
k
ij as

∇Xi
Xj =

4
∑

k=1

Γk
ijXk,

A(Xi, Xj) =

4
∑

k=1

Ak
ijXk.

Then the equations (2) and (3) can be rewritten as

Xi

(

Γl
jk

)

−Xj

(

Γl
ik

)

=ǫ
(

δjkδ
l
i − δikδ

l
j

)

+ Ar
jkA

l
ir − Ar

ikA
l
jr

+ Γr
ikΓ

l
jr − Γr

jkΓ
l
ir + Γl

rk

(

Γr
ij − Γr

ji

)

,
(7)

Xi

(

Al
jk

)

−Xj

(

Al
ik

)

=
(

Γr
ij − Γr

ji

)

Al
rk + Γr

ikA
l
jr − Γr

jkA
l
ir − Γl

irA
r
jk + Γl

jrA
r
ik,(8)

where we have used the Einstein convention. We split the connection ∇ into its compo-
nents and write

∇X1X1 = a1X2 + a2X3 + a3X4, ∇X1X2 = −a1X1 + a4X3 + a5X4,
∇X2X1 = b1X2 + b2X3 + b3X4, ∇X2X2 = −b1X1 + b4X3 + b5X4,
∇X3X1 = c1X2 + c2X3 + c3X4, ∇X3X2 = −c1X1 + c4X3 + c5X4,
∇X4X1 = d1X2 + d2X3 + d3X4, ∇X4X2 = −d1X1 + d4X3 + d5X4,

∇X1X3 = −a2X1 − a4X2 + a6X4, ∇X1X4 = −a3X1 − a5X2 − a6X3,
∇X2X3 = −b2X1 − b4X2 + b6X4, ∇X2X4 = −b3X1 − b5X2 − b6X3,
∇X3X3 = −c2X1 − c4X2 + c6X4, ∇X3X4 = −c3X1 − c5X2 − c6X3,
∇X4X3 = −d2X1 − d4X2 + d6X4, ∇X4X4 = −d3X1 − d5X2 − d6X3.

Equation (8) induces linear relations between the components, independent of the am-
bient space. The Gauss equations give further information about ∇ but use differential
equations and depend on the ambient space form.

Lemma 2.1. On a special Lagrangian submanifoldM having a local SO(2)⋊S3-symmetry
there exists a frame corresponding to (4) such that:

(9)

∇X1X1 = a1X2 + a2X3 + a3X4, ∇X1X2 = −a1X1 − b2X3,
∇X2X1 = b1X2 + b2X3, ∇X2X2 = −b1X1 + a2X3 + a3X4,

∇X3X1 =
b2
3
X2, ∇X3X2 = − b2

3
X1,

∇X4X1 = 0, ∇X4X2 = 0,
∇X1X3 = −a2X1 + b2X2 + a6X4, ∇X1X4 = −a3X1 − a6X3,
∇X2X3 = −b2X1 − a2X2 + b6X4, ∇X2X4 = −a3X2 − b6X3,

∇X3X3 = c6X4, ∇X3X4 = −c6X3,
∇X4X3 = d6X4, ∇X4X4 = −d6X3.

Furthermore, the derivatives of r are given by

(X1 + iX2)(r) = 3ir(a1 + ib1),(10)

X3(r) = ra2,(11)

X4(r) = ra3.(12)
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Proof. This is just a straightforward application of equation (8). For instance

(∇X2A) (X1, X1) = X2(r)X1 + 3rb1X2 + rb2X3 + rb3X4,

(∇X1A) (X2, X1) = 3ra1X1 −X1(r)X2 − ra4X3 − ra5X4.

Then the corresponding coordinates of both derivatives are the same. Finally we can
set b3 = 0, by rotating the distribution N2 such that X3 lies in the direction of ∇X1X2,
projected on N2. �

It is interesting to note that N2 is an integrable distribution. The distribution N1

however is integrable if and only if b2 = 0. Applying (7), we obtain the following result.

Lemma 2.2. The equations (7) on our frame of choice induce a system of differential
equations given by:

(X1 + iX2)(a2 − ib2) = a3(a6 + ib6),(13)

X3(a2 + ib2) = ǫ+ a23 + (a2 + ib2)
2,(14)

X4(a2 + ib2) = a3(a2 + ib2),(15)

(X1 + iX2)(a3) = −(a2 − ib2)(a6 + ib6),(16)

X3(a3) = 0,(17)

X4(a3) = a23 + ǫ,(18)

X1(b6)−X2(a6) = −(a1a6 + b1b6),(19)

X3(a6 + ib6) =
5

3
ib2(a6 + ib6),(20)

X4(a6 + ib6) = 2a3(a6 + ib6),(21)

X1(b1)−X2(a1) = 2r2 − (ǫ+ a23)−
5

3
b22 − a22 − a21 − b21,(22)

X2(b1) +X1(a1) = −2

3
a2b2,(23)

3X3(a1)−X1(b2) = 3a1a2 − 2b1b2,(24)

3X3(b1)−X2(b2) = 2b2a1 + 3b1a2,(25)

X4(a1 + ib1) = a3(a1 + ib1) +
b2
3
(a6 + ib6).(26)

Proof. This is also a straightforward application of (7). For example:

X1

(

Γ1
23

)

−X2

(

Γ1
13

)

= Γr
13Γ

1
2r − Γr

23Γ
1
1r + Γ1

r3Γ
r
12 − Γ1

r3Γ
r
21

= a3b6,

X1

(

Γ2
23

)

−X2

(

Γ2
13

)

= Γr
13Γ

2
2r − Γr

23Γ
2
1r + Γ2

r3Γ
r
12 − Γ2

r3Γ
r
21

= −a3a6.
Combining both equations using the usual complex notations leads to (13). The other
equations are obtained in a similar way. �

2.3. Warped Products. In the analysis that follows, we will often encounter warped
products of manifolds. When we consider a warped product of Riemannian manifolds
(M1, g1) and (M2, g2) with warping function ef , where f :M1 → R, we get a Riemannian
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manifold (M1×M2, gf) where M1×M2 as a differentiable manifolds is the product of M1

and M2 and the metric gf is given as

gf(X, Y ) = g1(X1, Y1) + e2fg2(X2, Y2),

where a vector field X is uniquely decomposed into a part X1 tangent to M1 and X2

tangent to M2. We denote this warped product as M1 ×ef M2. The following result can
be obtained, see [9].

Theorem 2.1. Consider a Riemannian manifold (M, g) with Levi-Civita connection ∇
and suppose that on a neighborhood of p ∈ M there are orthogonal distributions N1 and
N2 such that

∀X, Y ∈ N1(i.e. X and Y are sections of N1) : ∇XY ∈ N1,

∀X, Y ∈ N2 : ∇XY = ∇̃XY + g(X, Y )H,

where ∇̃ is the projection of ∇ on N2 and H ∈ N1. Then there exists a function f :M →
R such that on a neighborhood of p, M can be written as M1 ×ef M2, where Mi is an
integral manifold of Ni.
If furthermore H = λH0, where ‖H0‖ = 1, and X(λ) = 0 for every X ∈ N2, then
f :M1 → R and H = − grad ef .

The first part of the theorem constructs a twisted product, the second part reduces
this to a warped product. This will be useful in choosing coordinates, since the product
structures allows for coordinates to be chosen on each factor separately. In particular, if
dim (N1) = 1, then any non vanishing vector field in N1 can be fixed as a useful coordinate
vector field on M .

3. Submanifolds in C4.

3.1. The case where b2 = 0. The assumption that X3 lies along ∇X1X2 becomes redun-
dant since the latter has no N2 component. Instead, we can choose X3 in the direction
of ∇X1X1, projected on N2. Hence without loss of generality we can assume that a3 = 0.
The equations (7) show that in this case either a2 = 0 or a6 = b6 = c6 = d6 = 0. First we
will assume that a2 6= 0.

Theorem 3.1. Consider M a special Lagrangian submanifold in C4 having SO(2)⋊ S3-
symmetry and an orthogonal frame corresponding to (4). Suppose that N1 is an integrable
distribution and ∇X1X1 is nowhere contained within this distribution. Then M is locally
congruent to

(27) F (t, s, u, v) = (t, sφ(u, v))

where φ is the horizontal lift of a special Lagrangian submanifold of CP 2 to the unit sphere
in C3.
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Proof. Taking into account every component that vanishes in (9), we find

∇X1X1 = a1X2 + a2X3 ∇X1X2 = −a1X1,
∇X2X1 = b1X2 ∇X2X2 = −b1X1 + a2X3,
∇X3X1 = 0 ∇X3X2 = 0,
∇X4X1 = 0 ∇X4X2 = 0,

∇X1X3 = −a2X1 ∇X1X4 = 0,
∇X2X3 = −a2X2 ∇X2X4 = 0,

∇X3X3 = 0 ∇X3X4 = 0,
∇X4X3 = 0 ∇X4X4 = 0.

We find that the distributions span{X4} and span{X1, X2, X3} satisfy the conditions for
a warped product R ×ef N

3. But X4(f) = 0, hence f is a constant. M is a standard
Riemannian product R×N3 and its immersion can be written, up to an isometry as

F (t, x) = (t, ψ(x)) , ψ : N3 → C4.

The immersion ψ is contained in the subspace orthogonal to both X4 and JX4, since they
both are constant unit normals along N3. Now it is also obvious that span{X3} and N1

satisfy the conditions for a warped product. So N3 can be decomposed as R×eg N
2 and

X3(g) = −a2. Then X3 can be associated with a coordinate s on the manifold and it
follows that

DX3X3 =
∂2F

∂s2
= 0 ⇒ F = As+B.

Both A and B are independent of (s, t). Calculating (7), one has

X3(a2) =
∂a2
∂s

= a22.

The solution of this equation, after a translation of the s-coordinate is given as a2 = −1
s
.

The derivatives of X3 to X1 and X2 are

DXi
X3 =

∂F∗Xi

∂s
= A∗Xi

=
1

s
Xi = A∗Xi +

B∗Xi

s
⇒ B∗ = 0.

So B is a constant vector along the submanifold and vanishes when applying a translation.
It is easy to see that X3 = A and is orthogonal to Xi = sA∗(Xi), for i ∈ {1, 2}. Hence
everywhere along A, the position vector is orthogonal to the tangent space. Thus A
has constant length. Calculating the other covariant derivatives yields for example for
i, j ∈ {1, 2} that

A∗Xi =
F∗Xi

s
,

DXi
(A∗Xj) =

DXi
(F∗Xj)

s
= A∗

(

∇̃Xi
Xj

)

+ JA∗ (K(Xi, Xj))−
1

s2
δijφ.

(28)

Here ∇̃ is the connection restricted to N2. Combining this with the other equations in (7),
it follows that A is a C-totally real immersion in S5 ⊂ C3. Furthermore, the components
a1 and b1 have no other restrictions on them except satisfying the Gauss equations for a
minimal C-totally real submanifold of S5. This proves the theorem. �
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The case a2 = 0 was the only case that was studied in [7]. We can quote the following
result from [7].

Theorem 3.2. ConsiderM a special Lagrangian submanifold in C4 having a local SO(2)⋊
S3-symmetry group and an orthogonal frame corresponding to (4). Suppose that N1 is an
integrable distribution and ∇X1X1 is contained within this distribution. Then M is locally
congruent to

(29) F (t, s, u, v) = (t, s, φ(u, v))

where φ : C → C2 is a special Lagrangian surface.

Remark 3.1. As proved in [7], a special Lagrangian surface in C2, with complex coordi-
nates x1+ iy1 and x2+ iy2 is a holomorphic curve in C2 with complex coordinates x1− ix2
and y1 + iy2, and conversely.

3.2. The case where b2 6= 0. Now the distribution N1 is no longer integrable. The
simplest case one can hope for is that there is a 3-dimensional integrable distribution
containing N1. Such a distribution should contain at least X3 since

[X1, X2] mod N1 ‖ X3.

Using the fact that b2 6= 0, the equations (7) reduce (9) to

(30)

∇X1X1 = a1X2 + a2X3 + a3X4 ∇X1X2 = −a1X1 − b2X3,
∇X2X1 = b1X2 + b2X3 ∇X2X2 = −b1X1 + a2X3 + a3X4,

∇X3X1 =
b2
3
X2 ∇X3X2 = − b2

3
X1,

∇X4X1 = 0 ∇X4X2 = 0,
∇X1X3 = −a2X1 + b2X2 + a6X4 ∇X1X4 = −a3X1 − a6X3,
∇X2X3 = −b2X1 − a2X2 + b6X4 ∇X2X4 = −a3X2 − b6X3,

∇X3X3 = a3X4 ∇X3X4 = −a3X3,
∇X4X3 = 0 ∇X4X4 = 0.

It is apparent that the condition that N+ is integrable is given by a6 + ib6 = 0. We
consider this case first.

Theorem 3.3. Suppose M is a special Lagrangian submanifold in C4 with SO(2)⋊ S3-
symmetry, such that N1 is not an integrable distribution, but N+ is. Then the submanifold,
up to isometry, can be given locally by either

(31) F (t, s, u, v) = (t, φ(s, u, v)) ,

where φ is a special Lagrangian submanifold with S3-symmetry in C3, or

(32) F (t, s, u, v) = tφ(s, u, v)

where φ is the horizontal lift of a special Lagrangian submanifold with local S3-symmetry
in CP 3 to the unit sphere in C4.

Proof. We find according to (30) and (7) that span{X4} and N+ satisfy the conditions
for a warped product. So M can be decomposed as R ×ef N

3, where X4(f) = −a3. We
can solve

X4(a3) =
∂a3
∂t

= a23.
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This equation has 2 possible solutions.
First, we assume a3 = 0. In this case M is simply the manifold R × N3. Hence the
immersion, up to isometry, can be given as

F (t, s, u, v) = (t, φ(s, u, v)),

where φ is a 3-fold immersed in the subspace C3 orthogonal to X4 and JX4. Similar
calculations as in (28) show that this can be any special Lagrangian submanifold in C3,
given the presence of an S3-symmetry in the second fundamental form.
The second solution, after a translation of t, is given by a3 = −1

t
. The calculations are

similar to the case where b2 = 0 and a2 6= 0. This gives the required result. �

The last case in C4 is the one where there is no integrable distribution containing N1

other than the whole tangent bundle. In this case, we can no longer rely on an obvious
warped product structure. We can attempt to introduce a set of independent coordinates
and reduce (7) to a system of PDE’s on C4 using as little functions as possible. We
now use (13) to (26) to construct a coordinate frame from {X1, X2, X3, X4}. Since N2 is
integrable, it is a good idea to choose X4 = T and µX3 = S. Requiring that [S, T ] = 0
implies that

[µX3, X4] = µ [X3, X4]−X4(µ)X3 = − (µa3 +X4(µ))X3 = 0.

We can find such a µ by taking µ = 1√
|ǫ+a23|

. The equation a23 + ǫ = 0 implies that a3 is

a constant and hence (a2 − ib2)(a6 + ib6) = 0. This will correspond to the integrability of
either N1 or N+. Therefore µ is well defined.

Vector fields U and V can be sought such that every couple out of {S, T, U, V } com-
mutes. Such an attempt can be made, writing

(33) U + iV = (ρ1 − iρ2)
(

(X1 + iX2) + (α1 + iβ1)S + (α2 + iβ2)T
)

We rename the following expressions:

ρ = ρ1 − iρ2,

γj = αj + iβj j ∈ {1, 2}.
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After calculating the Lie brackets of these four vector fields, the following conditions on
the introduced functions make the vector fields commute:

X4(ρ) = −a3ρ,(34)

X3(ρ) = −
(

a2 +
2

3
ib2

)

ρ,(35)

(X1 − iX2)(ρ) = (b1 + ia1) ρ,(36)

X4(γ1) = −1

µ
(a6 + ib6) + a3γ1,(37)

X3(γ1) =
1

µ2
(X1 + iX2)(µ) + γ1

(

a2 +
2

3
ib2

)

,(38)

X2(α1)−X1(β1) = a1α1 + b1β1 −
2

µ
b2,(39)

X4(γ2) = a3γ2,(40)

X3(γ2) = (a6 + ib6) +

(

a2 +
2

3
ib2

)

γ2,(41)

X2(α2)−X1(β2) = a1α2 + b1β2.(42)

The following result can be obtained.

Lemma 3.1. Suppose f and g are real valued functions on the manifold satisfying

S(f) = 0, T (f) = −1,
S(g) = −1, T (g) = 0,

and defining

X1(f) = α2, X2(f) = β2,
X1(g) = α1, X2(g) = β1,

then the functions αi and βi obtained this way satisfy the conditions (37) to (42).

It is interesting to see that this way the vector fields

Ũ = X1 + α1S + α2T,

Ṽ = X2 + β1S + β2T,

satisfy Ũ(f) = Ũ(g) = Ṽ (f) = Ṽ (g) = 0. Furthermore Ũ and Ṽ are independent of one-
another and they span the distribution which is the intersection of the kernel of d f and
d g. Note that this distribution is indeed 2-dimensional since both forms have a hyperplane
as a kernel and these kernels do not coincide, since the 1-forms are linearly independent.
Using the dimension theorem, they have a 2-dimensional intersection. Construction (33)
is just a complex rotation of these two vector fields in that distribution. This way, it is
clear that f and g serve as coordinates s and t conjugate to S and T .

Proof. Apply the relation

[Xi, Xj] (f) = XiXj(f)−XjXi(f) = ∇Xi
Xj(f)−∇Xj

Xi(f)

on both functions, using (30). �
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A suitable function for f is easily found, since S(a3) = 0. Let f be a function of a3,
then

X4(f) = f ′(ǫ+ a23) = −1 ⇔ f ′ = − 1

ǫ+ a23
.

Hence f can be given by

f = −
∫

1

ǫ+ a23
d a3.

This also determines γ2 completely, since using (13) yields

γ2 = (X1 + iX2)(f) = f ′(X1 + iX2)(a3)

=
a2a6 + b2b6
ǫ+ a23

+ i
a2b6 − b2a6
ǫ+ a23

.

As for the function g, the complex valued function z = µ(a2 + ib2) can be considered and
calculations show

X4(z) = −µa3(a2 + ib2) + µa3(a2 + ib2) = 0,

S(z) = µ2
(

ǫ+ a23 + (a2 + ib2)
2
)

= sg
(

ǫ+ a23
)

+ z2.

Rewriting ǫ̃ = sg(ǫ+a23), we find that z is useful as long as z2+ ǫ̃ 6= 0. When ǫ̃ = +1, this

occurs when a2 = 0 and |b2| =
√

ǫ+ a23. When ǫ̃ = −1, this occurs when |a2| =
√

|ǫ+ a23|
and b2 = 0, resulting in N1 being integrable.

First we assume that z2 6= −ǫ̃. Then the function g can be calculated as the real part
of a function G of z given by

S(G) = (ǫ̃+ z2)G′ = −1 ⇔ G′ = − 1

ǫ̃+ z2
.

A function ρ still has to be constructed satisfying (34) to (36). Define a function H as

H = ρ3r(z2 + ǫ̃) |ǫ+ a23|.
This function is a constant on the submanifold and can be taken to be equal to 1. This
defines a function ρ satisfying the necessary conditions.

Using the Frobenius theorem in [10], a coordinate frame on the submanifold is given by

X4 = T,

X3 =
1

µ
S,

X1 + iX2 =
U + iV

ρ
− γ1S − γ2T.

We can describe the dependence of a6 + ib6 on (s, t) by writing

a6 + ib6 =
k3 + ik4

ρ

√

|a23 + ǫ|
(

z̄2 + ǫ̃
)

−1
2 .

The functions k3 and k4 depend solely on (u, v). This expression is obtained from (20)
and (21). The rest of the equations in (7) can be rewritten and solved. Applying our
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method for ǫ = 0, we find after a translation of the coordinates that

a3 = −1

t
,

x =
sin(2s)

cos(2s) + cosh(2k1)
⇒ a2 = − sin(2s)

t(cos(2s) + cosh(2k1))
,

y =
sinh(2k1)

cos(2s) + cosh(2k1)
⇒ b2 = − sinh(2k1)

t(cos(2s) + cosh(2k1))
,

r =
ek2

t
√

cos(2s) + cosh(2k1)
.

Here the functions k1 and k2 depend solely on (u, v). Then we can use (13) to find
an expression for γ1 in terms of the coordinates. Equation (10) can be used to find an
expression for a1 and b1 in terms of the coordinates. We obtain

γ1 =
(k3 + ik4) cos(s− ik1) + t

(

∂k1
∂v

− i∂k1
∂u

)

tρ
,

a1 =
2

2
3 e

2
3
k2

3t3 (cos(2s) + cosh(2k1))
2

(

t
(

(cos(2s) + cosh(2k1))(ρ1
∂k2
∂v

+ ρ2
∂k2
∂u

)

+ sin(2s)(ρ1
∂k1
∂u

− ρ2
∂k1
∂v

)− sinh(2k1)(ρ1
∂k1
∂v

+ ρ2
∂k1
∂u

)
)

+ sinh(2k1) (cos(s) cosh(k1)(k4ρ2 − k3ρ1) + sin(s) sinh(k1)(k4ρ1 + k3ρ2))
)

,

b1 =
2

2
3 e

2
3
k2

3t3 (cos(2s) + cosh(2k1))
2

(

t
(

(cos(2s) + cosh(2k1))(ρ2
∂k2
∂v

− ρ1
∂k2
∂u

)

+ sin(2s)(ρ2
∂k1
∂u

+ ρ1
∂k1
∂v

) + sinh(2k1)(ρ1
∂k1
∂u

− ρ2
∂k1
∂v

)
)

+ sinh(2k1) (sin(s) sinh(k1)(k4ρ2 − k3ρ1)− cos(s) cosh(k1)(k4ρ1 + k3ρ2))
)

.

Now every function on the submanifold is expressed in terms of (s, t, u, v), possibly
indirectly through {k1, k2, k3, k4}. Demanding that the other Gauss equations are satisfied
gives partial differential equations for ki, given by

∂k4
∂u

− ∂k3
∂v

= 2 tanh(k1)

(

k3
∂k1
∂v

− k4
∂k1
∂u

)

,

∂k4
∂v

+
∂k3
∂u

= −2 coth(k1)

(

k3
∂k1
∂u

+ k4
∂k1
∂v

)

,

∆k2 = 3 ∗ 2 1
3 e−

2k2
3

(

−e2k2 + cosh(2k1)
)

,

∆k1 = −2
1
3 e−

2k2
3 sinh(2k1).

(43)

Now we return to the case where −1 = z2 and ǫ̃ = 1. We assume first that ǫ isn’t specified.
In this case a2 = 0, b2 = ±

√

ǫ+ a23 and S(z) = 0, so z is insufficient to construct the
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function g. Equations (7) are reduced to

(X1 − iX2)(a6 + ib6) = −i(b1 + ia1)(a6 + ib6),(44)

X3(a6 + ib6) = ±i5
3

√

ǫ+ a23(a6 + ib6),(45)

X4(a6 + ib6) = 2a3(a6 + ib6),(46)

X1(b1)−X2(a1) = 2r2 − 8

3
(ǫ+ a23)− a21 − b21,(47)

X1(a1) +X2(b1) = 0,(48)

X4(a1 + ib1) = a3(a1 + ib1)±
√

ǫ+ a23
(a6 + ib6)

3
,(49)

X3(a1 + ib1) =
i

3

(

a3(a6 + ib6)± 2
√

ǫ+ a23(a1 + ib1)

)

.(50)

The first equation is obtained from applying integrability on a3. Now we define

w =
a6 + ib6
ǫ+ a23

,

which after derivation gives

X4(w) = −2a3
(a6 + ib6)

ǫ+ a23
+ 2a3

a6 + ib6
ǫ+ a23

= 0,

S(w) = ±i5
3
w.

The resulting differential equation for a function G of w will be

S(G) = ±G′i
5

3
w = −1 ⇔ G′ = ±i 3

5w
.

The solution is that G is a logarithm of w. We find that H defined by

H = w2(ǫ+ a23)
2ρ5r

is a constant and hence can be used to express ρ. We can thus solve w as

w = ek1±i 5
3
s = ek1

(

cos(
5

3
s)± i sin(

5

3
s)

)

.

Applying (18),(46),(45),(12) and (11) when ǫ = 0 yields

a3 = −1

t
,

a6 = ek1
cos(5

3
s)

t2
,

b6 = ±ek1 sin(
5
3
s)

t2
,

r =
ek2

t
.

The equation (10) now gives a1 + ib1 immediately without going through γ1 because of
(11). The final unknown, γ1 can then be determined using (44). When we pick b2 = a3,
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we obtain

γ1+ =
−5ek1+

5si
3 + e

2k1+k2
5

+ 2si
3 t
(

(∂k2
∂v

− 3∂k1
∂v

)− i(∂k2
∂u

− 3∂k1
∂u

)
)

5t2
,

a1+ =
ek1 cos(5s

3
) + e

2k1+k2
5 t

(

cos(2s
3
)∂k2
∂v

+ sin(2s
3
)∂k2
∂u

)

3t2
,

b1+ =
ek1 sin(5s

3
)− e

2k1+k2
5 t

(

cos(2s
3
)∂k2
∂u

− sin(2s
3
)∂k2
∂v

)

3t2
,

and for b2 = −a3 we obtain

γ1− =
−5ek1−

5si
3 + e

2k1+k2
5

− 2si
3 t
(

(3∂k1
∂v

− ∂k2
∂v

)− i(3∂k1
∂u

− ∂k2
∂u

)
)

5t2
,

a1− =
−ek1 cos(5s

3
) + e

2k1+k2
5 t

(

cos(2s
3
)∂k2
∂v

− sin(2s
3
)∂k2
∂u

)

3t2
,

b1− =
ek1 sin(5s

3
)− e

2k1+k2
5 t

(

cos(2s
3
)∂k2
∂u

+ sin(2s
3
)∂k2
∂v

)

3t2
.

Equations (47) and (39) result in restrictions on the functions k1 and k2 of (u, v) given by

∆k2 = e−
2
5
(2k1+k2)(8− 6e2k2),

∆k1 = e−
2
5
(2k1+k2)(6− 2e2k2).

(51)

These equations are valid for both b2 = ±a3. Using the constructed functions, the rest
of the Gauss equations don’t impose further conditions. We can summarize this result in
the following theorem.

Theorem 3.4. Each special Lagrangian submanifold of C4 with SO(2) ⋊ S3-symmetry
where the only integral distribution containing N1 is the tangent bundle, can be constructed
in the way above using either functions {k1, k2, k3, k4} subject to (43) or functions {k1, k2}
subject to (51). Conversely, each such a construction results in such a submanifold, unique
up to local isometry.

In the upcoming sections we will consider the construction for ǫ = ±1.

4. Submanifolds in CP 4.

4.1. The case where b2 = 0. This means that both N1 and N2 are integrable distribu-
tions. We can assume a3 = 0. However, the Gauss equation

(52) X3(a2) = 1 + a22

no longer allows for a2 being a constant. The following result is obtained:

Theorem 4.1. SupposeM is a special Lagrangian submanifold in CP 4 having SO(2)⋊S3-
symmetry. Suppose N1 is integrable. Then M can be lifted horizontally to a submanifold
in the unit sphere of C5 through F and this lift is congruent to

(53) F (t, s, u, v) = (φ(u, v) cos(s), sin(s) cos(t), sin(s) sin(t)) ,
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where φ is the horizontal lift of a special Lagrangian submanifold in CP 2 to the unit sphere
in C3.

Proof. Equations (7) reduce ∇ to

∇X1X1 = a1X2 + a2X3 ∇X1X2 = −a1X1,
∇X2X1 = b1X2 ∇X2X2 = −b1X1 + a2X3,
∇X3X1 = 0 ∇X3X2 = 0,
∇X4X1 = 0 ∇X4X2 = 0,

∇X1X3 = −a2X1 ∇X1X4 = 0,
∇X2X3 = −a2X2 ∇X2X4 = 0,

∇X3X3 = 0 ∇X3X4 = 0,
∇X4X3 =

X4

a2
∇X4X4 = −X3

a2
.

The distributions N1 and N2 satisfy the conditions for a warped product N2 ×ef N1.
Furthermore, the distributions span{X3} and span{X4} satisfy those of a warped product
and we can write M = R ×eg R ×ef N1. The functions f and g depend solely on the
parameter corresponding to X3 and are given by X3(f) = −a2 and X3(g) =

1
a2
. We can

assume X3 =
∂
∂s

on the submanifold. We can also find a function µ(s) such that µX4 =
∂
∂t
.

To find a suitable µ, we solve

[X3, µX4] =

(

X3(µ)−
µ

a2

)

X4 =

(

µ′(1 + a22)−
µ

a2

)

X4 = 0.

The function µ = a2√
1+a22

satisfies this equation. We can find a2(s) by solving

∂a2
∂s

= 1 + a22 ⇒ a2 = tan(s).

Hence µ(s) = sin(s) and we calculate for i ∈ {1, 2} that

D ∂
∂s

∂

∂s
=
∂2F

∂s2
= −F

⇒ F = A cos(s) +B sin(s),

D ∂
∂t

∂

∂s
=
∂2F

∂t∂s
= −∂A

∂t
sin(s) +

∂B

∂t
cos(s)

= cot(s)
∂F

∂t
=

cos(s)2

sin(s)

∂A

∂t
+ cos(s)

∂B

∂t

⇒ ∂A

∂t
= 0,

DXi

∂

∂s
=
∂F∗Xi

∂s
= −A∗Xi sin(s) +B∗Xi cos(s)

= − tan(s)Xi = −A∗Xi sin(s)−
sin(s)2

cos(s)
B∗Xi

⇒ B∗Xi = 0.

So A is the immersion of N1 and B is a curve tangent to X4. Because F lies in the unit
sphere, one has

〈F, F 〉 = cos(s)2〈A,A〉+ sin(s)2〈B,B〉+ sin(2s)〈A,B〉
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which implies that A and B have both unit length and are orthogonal. We can also
calculate

D ∂
∂t

∂

∂t
= − cos(s) sin(s)

∂F

∂s
− sin(s)2F = − sin(s)B

=
∂2F

∂t2
= sin(s)

∂2B

∂t2

⇒ B = B1 cos(t) +B2 sin(t).

Vector fields B1 and B2 are constant, normalized and orthogonal. This follows from the
fact that 〈B,B〉 = 1. Finally similar to (28), A can be shown to be any special Lagrangian
submanifold in CP 2 lifted to the unit sphere in C3 orthogonal to B1 and B2 directions.
Fixing B1 and B2 by an isometry leads to (53). �

4.2. The case where b2 6= 0. When N+ is integrable, so when a6 = b6 = 0, the equations
for ∇ are given by (30). We have:

Theorem 4.2. Suppose M is a special Lagrangian submanifold in CP 4 having a local
SO(2)⋊ S3 symmetry. Suppose N+ is integrable. Then M can be lifted horizontally to a
submanifold in the unit sphere of C5 through F and is locally isometric to

(54) F (t, s, u, v) = (φ(s, u, v) cos(t), sin(t)) ,

where φ is the horizontal lift of a special Lagrangian submanifold in CP 3 with S3-symmetry
to the unit sphere in C4.

Proof. The manifold is a warped product R×ef N
3. Solving the Gauss equation

X4(a3) =
∂a3
∂t

= 1 + a23

yields a3 = tan(t). For i ∈ {1, 2, 3} this implies

DX4X4 =
∂2F

∂t2
= −F

⇒ F = A cos(t) +B sin(t),

DXi
X4 = −A∗Xi sin(t) +B∗Xi cos(t)

= − tan(t)Xi = −A∗Xi sin(t)− B∗Xi

sin(t)2

cos(t)

⇒ B∗ = 0.

Thus B is a constant vector field along the submanifold and A is an immersion of a 3-fold
N3. Using the fact that F is of unit length, A and B are orthogonal and of unit length.
Using calculations similar to (28) A is a C-totally real submanifold in S7 having local
S3-symmetry, where S7 lies in the subspace orthogonal to B and JB. Applying a suitable
isometry results in (54). �

The method to solve the case where the only integrable distribution containing N1 is
the tangent bundle, has been analyzed earlier for a non-specific complex space form. We
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can now fill in ǫ = 1 and we find for z2 6= −1 that

a3 = tan(t),

a2 =
sin(2s)

cos(t)(cos(2s) + cosh(2k1))
,

b2 =
sinh(2k1)

cos(t)(cos(2s) + cosh(2k1))
,

r =
ek2

cos(t)
√

cos(2s) + cosh(2k1)
,

a6 + ib6 =
k3 + ik4

ρ

√

1 + a23
(

1 + z̄2
)− 1

2 ,

where the functions ki depend only on (u, v). Solving for (7), we obtain furthermore that

γ1 =
− tan(t)(k3 + ik4) cos(s− ik1) +

(

∂k1
∂v

− i∂k1
∂u

)

ρ
,

a1 =
2

2
3 e

2
3
k2

3 cos(t)2 (cos(2s) + cosh(2k1))
2

(

(cos(2s) + cosh(2k1))(ρ1
∂k2
∂v

+ ρ2
∂k2
∂u

)

+ sin(2s)(ρ1
∂k1
∂u

− ρ2
∂k1
∂v

)− sinh(2k1)(ρ1
∂k1
∂v

+ ρ2
∂k1
∂u

)

− tan(t) sinh(2k1) (cos(s) cosh(k1)(k4ρ2 − k3ρ1) + sin(s) sinh(k1)(k4ρ1 + k3ρ2))
)

,

b1 =
2

2
3 e

2
3
k2

3 cos(t)2 (cos(2s) + cosh(2k1))
2

(

(cos(2s) + cosh(2k1))(ρ2
∂k2
∂v

− ρ1
∂k2
∂u

)

+ sin(2s)(ρ2
∂k1
∂u

+ ρ1
∂k1
∂v

) + sinh(2k1)(ρ1
∂k1
∂u

− ρ2
∂k1
∂v

)

− sinh(2k1) tan(t) (sin(s) sinh(k1)(k4ρ2 − k3ρ1)− cos(s) cosh(k1)(k4ρ1 + k3ρ2))
)

.

The other equations in (7) impose restrictions on {k1, k2, k3, k4} given by

∂k4
∂u

− ∂k3
∂v

= 2 tanh(k1)

(

k3
∂k1
∂v

− k4
∂k1
∂u

)

,

∂k4
∂v

+
∂k3
∂u

= −2 coth(k1)

(

k3
∂k1
∂u

+ k4
∂k1
∂v

)

,

∆k1 = e−
2k2
3
sinh(2k1)

2

(

−2
4
3 + e

2k2
3 (k23 + k24)

)

,

∆k2 = 3 ∗ 2 1
3 e−

2k2
3

(

cosh(2k1)− e2k2
)

.

(55)
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When a2 = 0 and b2 = ±
√

1 + a23, we find

a6 =
ek1 cos(5

3
s)

cos(t)2
;

b6 = ±e
k1 sin(5

3
s)

cos(t)2
;

r =
ek2

cos(t)
.

Furthermore, we obtain for b2 =
√

1 + a23 that

γ1+ =
−5ek1+

5si
3 tan(t) + e

2k1+k2
5

+ 2si
3

(

(∂k2
∂v

− 3∂k1
∂v

)− i(∂k2
∂u

− 3∂k1
∂u

)
)

5 cos(t)
,

a1+ =
ek1 cos(5s

3
) tan(t) + e

2k1+k2
5

(

cos(2s
3
)∂k2
∂v

+ sin(2s
3
)∂k2
∂u

)

3 cos(t)
,

b1+ =
ek1 sin(5s

3
) tan(t)− e

2k1+k2
5

(

cos(2s
3
)∂k2
∂u

− sin(2s
3
)∂k2
∂v

)

3 cos(t)
,

and for b2 = −
√

1 + a23 we obtain

γ1− =
−5ek1−

5si
3 tan(t) + e

2k1+k2
5

− 2si
3

(

(3∂k1
∂v

− ∂k2
∂v

)− i(3∂k1
∂u

− ∂k2
∂u

)
)

5 cos(t)
,

a1− =
−ek1 cos(5s

3
) tan(t) + e

2k1+k2
5

(

cos(2s
3
)∂k2
∂v

− sin(2s
3
)∂k2
∂u

)

3 cos(t)
,

b1− =
ek1 sin(5s

3
) tan(t)− e

2k1+k2
5

(

cos(2s
3
)∂k2
∂u

+ sin(2s
3
)∂k2
∂v

)

3 cos(t)
.

Solving the last equations in (7) implies restrictions on the functions k1(u, v) and k2(u, v)
given by

∆k1 = 2e−
2(2k1+k2)

5

(

3− e2k1 − e2k2
)

∆k2 = e−
2(2k1+k2)

5

(

8− e2k1 − 6e2k2
)

.
(56)

These equations are valid for both b2 = ±
√

1 + a23. We summarize this in the following
theorem.

Theorem 4.3. Each special Lagrangian submanifold of CP 4 with SO(2)⋊ S3-symmetry
where the only integral distribution containing N1 is the tangent bundle, can be constructed
in the way above using either functions {k1, k2, k3, k4} subject to (55) or functions {k1, k2}
subject to (56). Conversely, each such a construction results in such a submanifold, unique
up to local isometry.
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5. Submanifolds in CH4.

5.1. The case where b2 = 0. This is the case where N1 is an integrable distribution.
We assume that a3 = 0. Similar to the case in CP 4 we have that M is a double warped
product R ×eg R ×ef N

2. the function a2 depends only on the coordinate s and is given
by

∂a2
∂s

= a22 − 1.

This equation has 3 possible solutions, depending on the initial conditions. For a2(0) = 1,
it is a constant. For a2(0) > 1 it is given as a2 = − coth(s). Finally for a2(0) < 1, it is
given as a2(s) = − tanh(s). The connection ∇ is given by

∇X1X1 = a1X2 + a2X3 ∇X1X2 = −a1X1,
∇X2X1 = b1X2 ∇X2X2 = −b1X1 + a2X3,
∇X3X1 = 0 ∇X3X2 = 0,
∇X4X1 = 0 ∇X4X2 = 0,

∇X1X3 = −a2X1 ∇X1X4 = 0,
∇X2X3 = −a2X2 ∇X2X4 = 0,

∇X3X3 = 0 ∇X3X4 = 0,
∇X4X3 = −X4

a2
∇X4X4 =

X3

a2
.

We have the following result.

Theorem 5.1. Suppose M is a special Lagrangian submanifold in CH4 having a local
SO(2)⋊ S3-symmetry. Suppose N1 is integrable. Then M can be lifted horizontally to a
submanifold in H9 through F and is locally isometric to either

(57) F (t, s, u, v) = (sin(t) sinh(s), cos(t) sinh(s), φ(u, v) cosh(s)) ,

where φ is the horizontal lift of a special Lagrangian submanifold of CH2 to H5 in case
a22 < 1, or

(58) F (t, s, u, v) = (φ(u, v) sinh(s), cos(t) cosh(s), sin(t) cosh(s)) ,

where φ is the horizontal lift of a special Lagrangian submanifold of CP 2 to S5 in case
a22 > 1, or

(59) F (t, s, u, v) =
(

(φ(u, v), t) e−s,−1

2
e−s,

(

‖(φ(u, v), t)‖2 + if(u, v)
)

e−s + es
)

,

where φ is a special Lagrangian surface in C2 and f is the integral of the differential form

2

2
∑

i=1

(

xi d yi − yi dxi
)

on C2 in case a22 = 1.

Proof. We can check similar to the case in CP 4 that M = R×eg R×ef ×N2, where f and
g are functions on the first factor, determined by X3(g) = − 1

a2
and X3(f) = −a2. We

can treat the cases separately for each solution to a2(s).
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Assume a2 = − tanh(s), then it is easy to see that ∂
∂t

= − sinh(s)X4 commutes with
∂
∂s
. The Gauss identity now implies for i ∈ {1, 2} that

D ∂
∂s

∂

∂s
=
∂2F

∂s2
= F

⇒ F = A sinh(s) +B cosh(s),

D ∂
∂T

∂

∂s
=
∂2F

∂t∂s
=
∂A

∂t
cosh(s) +

∂B

∂t
sinh(s)

= coth(s)
∂F

∂t
=
∂A

∂t
cosh(s) +

∂B

∂t

cosh(s)2

sinh(s)

⇒ ∂B

∂t
= 0,

DXi

∂

∂s
=
∂F∗Xi

∂s
= A∗Xi cosh(s) +B∗Xi sinh(s)

= tanh(s)Xi = A∗Xi

sinh(s)2

cosh(s)
+B∗Xi sinh(s)

⇒ A∗Xi = 0.

Using the fact that 〈F, F 〉1 = −1, we get that 〈B,B〉1 = −〈A,A〉1 = −1 and 〈A,B〉1 = 0.
Furthermore, we find

D ∂
∂t

∂

∂t
=
∂2F

∂t2
=
∂2A

∂t2
sinh(s)

= − cosh(s) sinh(s)
∂F

∂s
+ sinh(s)2F = −A sinh(s)

⇒ A = A1 cos(t) + A2 sin(t).

Because A has unit length, so do A1 and A2 and they are both orthogonal. Calculations
similar to (28) show that B can be taken as the horizontal lift of any special Lagrangian
submanifold in CH2 and applying a suitable isometry gives (57).
For a2 = − coth(s) calculations similar to the previous case result in (58).
Finally we assume a2 = 1. Then the vector field given by ∂

∂t
= e−sX4 commutes with ∂

∂s
.

We can calculate for i ∈ {1, 2} that

D ∂
∂s

∂

∂s
=
∂2F

∂s2
= F ⇒ F = Aes +Be−s,

D ∂
∂t

∂

∂s
=
∂2F

∂t∂s
=
∂A

∂t
es − ∂B

∂t
e−s

= −∂F
∂t

= −∂A
∂t
es − ∂B

∂t
e−s

⇒ ∂A

∂t
= 0,

DXi

∂

∂s
=
∂F∗Xi

∂s
= A∗Xie

s − B∗Xie
−s

= −F∗Xi = −
(

A∗Xie
s +B∗Xie

−s
)

⇒ A∗ = 0.
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Using the fact that 〈F, F 〉1 = −1, we obtain that A and B are vector fields with 0 length
and they satisfy 〈A,B〉1 = −1

2
. Further calculations show

D ∂
∂t

∂

∂t
=
∂2F

∂t2
= e−s∂

2B

∂t2

= e−2s

(

∂F

∂s
+ F

)

= 2Ae−s

⇒ B = At2 +B1t+B2,

DXi

∂

∂t
=
∂F∗Xi

∂t
= B1∗Xie

−s = 0

⇒ B1∗ = 0.

We can conclude that F has the form

F =
(

At2 +B1t+ φ
)

e−s + Aes

Here, φ is an immersion of a 2-fold in C5
1 tangent to N1. Calculating the scalar products

of B and A, we get

〈A,B〉1 = t〈A,B1〉1 + 〈A, φ〉1 = −1

2

⇒ 〈A,B1〉1 = 0
∧

〈A, φ〉1 = −1

2
,

〈B,B〉1 = t2 (〈B1, B1〉1 − 1) + 2t〈B1, φ〉1 + 〈φ, φ〉1 = 0

⇒ 〈B1, B1〉1 = 1
∧

〈B1, φ〉1 = 0
∧

〈φ, φ〉1 = 0.

(60)

We can shift to a different standard basis of C5
1 such that

〈~z, ~w〉 = ℜ
(

3
∑

j=1

zjw̄j + z4w̄5 + z5w̄4

)

.

In this case the constant light-like vector A and time-like B1, after applying a suitable
isometry, can be chosen to be

A = (0, 0, 0, 0, 1) ,

B1 = (0, 0, 1, 0, 0) .

We can write φ = (φ1, φ2, φ3, φ4, φ5) where φj = xj + iyj. Then (60) implies

x4 = −1

2
,

x3 = 0,

x5 − 2y4y5 =
3
∑

j=1

|φj|2.
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We can use the fact that both F and iF are orthogonal to the tangent space in C5
1 and

this results in

φ4 = −1

2
,

φ3 = 0,

d y5 = 2

2
∑

i=1

(xi d yi − yi d xi).

This last equation is integrable if and only its derivative equals 0 along the submanifold.
But this derivative is nothing more than a multiple of the Kähler form on C2 spanned
by the first 2 complex coordinates. In other words, for such a submanifold to exist, the
projection of φ onto the first 2 coordinates should be a Lagrangian submanifold in C2.
Calculating the Gauss identity on DXi

Xj we find that the metric on this immersion is
given by

〈φ∗Xi, φ∗Xj〉 = e2sδij ,

where 〈a, b〉 is the standard scalar product on C2 and φ here is the restriction to the first
2 complex coordinates. Because 〈F∗Xi, F∗Xj〉 = δij and because φ3∗ = 0 and φ4∗ = 0
this condition is included in the warped product structure. Using calculations like (28)
we conclude that (φ1, φ2) can be any special Lagrangian 2-fold in C2. The result is
summarized in (59). �

5.2. The case where b2 6= 0. First we assume that N+ is an integrable distribution.
This is equivalent to a6 + ib6 = 0. The connection is given by (30), resulting in a warped
product structure R×ef N

3. The equation

X4(a3) =
∂a3
∂t

= a23 − 1

has a solution given as |a3| = 1, a3 = − tanh(t) or a3 = − coth(t), depending on the initial
value of a3. Using an analysis similar to the case of CP 4 and the case above gives the
following result.

Theorem 5.2. Suppose M is a special Lagrangian submanifold in CH4 having a local
SO(2) ⋊ S3-symmetry. Suppose N1 is non-integrable, but is contained in the integrable
N+ distribution. Then M can be lifted horizontally to a submanifold in H9 through F and
is locally isometric to either

(61) F (t, s, u, v) = (sinh(t), φ(s, u, v) cosh(t)) ,

where φ is the horizontal lift of a special Lagrangian submanifold of CH3 with a local
S3-symmetry to H7 in case a23 < 1, or

(62) F (t, s, u, v) = (φ(s, u, v) sinh(t), cosh(t)) ,

where φ is the horizontal lift of a special Lagrangian submanifold of CP 3 with a local
S3-symmetry to S7 in case a23 > 1, or

(63) F (t, s, u, v) =
(

φ(s, u, v)e−t,−e−t/2,
(

‖φ(s, u, v)‖2 + if(s, u, v)
)

e−t + et
)

,
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where φ is a special Lagrangian submanifold with a local S3-symmetry in C3 and f is the
integral of the differential form

2

3
∑

i=1

(

xi d yi − yi d xi
)

.

Finally we assume that there is no integrable distribution that contains N1 except for
the tangent bundle. We return to the analysis as done for C4, but set ǫ = −1. The result
will depend on the initial value of a3. First assume that a23 < 1, then ǫ̃ = −1. We find
functions {k1, k2, k3, k4} of (u, v) such that

a3 = − tanh(t),

a2 = − sinh(2s)

cosh(t) (cosh(2s) + cos(2k1))
,

b2 = − sin(2k1)

cosh(t) (cosh(2s) + cos(2k1))
,

r =
ek2

cosh(t)
√

cosh(2s) + cos(2k1)
,

a6 + ib6 =
k3 + ik4

ρ

√

1− a23
(

1− z̄2
)− 1

2 .

Using (7) as earlier, we obtain a1, b1, γ1 as

γ1 =
− tanh(t)(k3 + ik4) cosh(s− ik1) +

(

∂k1
∂v

− i∂k1
∂u

)

ρ
,

a1 =
2

2
3 e

2
3
k2

3 cosh(t)2 (cosh(2s) + cos(2k1))
2

(

(cosh(2s) + cos(2k1))(ρ1
∂k2
∂v

+ ρ2
∂k2
∂u

)

+ sinh(2s)(ρ2
∂k1
∂v

− ρ1
∂k1
∂u

) + sin(2k1)(ρ1
∂k1
∂v

+ ρ2
∂k1
∂u

)

+ sin(2k1) tanh(t) (cosh(s) cos(k1)(k4ρ2 − k3ρ1)− sinh(s) sin(k1)(k4ρ1 + k3ρ2))
)

,

b1 =
2

2
3 e

2
3
k2

3 cosh(t)2 (cosh(2s) + cos(2k1))
2

(

(cosh(2s) + cos(2k1))(ρ2
∂k2
∂v

− ρ1
∂k2
∂u

)

− sinh(2s)(ρ2
∂k1
∂u

+ ρ1
∂k1
∂v

)− sin(2k1)(ρ1
∂k1
∂u

− ρ2
∂k1
∂v

)
)

− sin(2k1) tanh(t) (sinh(s) sin(k1)(k4ρ2 − k3ρ1) + cosh(s) cos(k1)(k4ρ1 + k3ρ2))
)

.
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The other equations in (7) put restrictions on {k1, k2, k3, k4} given by

∂k4
∂u

− ∂k3
∂v

= 2 tan(k1)

(

k4
∂k1
∂u

− k3
∂k1
∂v

)

,

∂k4
∂v

+
∂k3
∂u

= −2 cot(k1)

(

k3
∂k1
∂u

+ k4
∂k1
∂v

)

,

∆k1 =
sin(2k1)

2

(

2
4
3 e−

2
3
k2 + k23 + k24

)

,

∆k2 = −3 ∗ 2 1
3 e−

2
3
k2
(

e2k2 + cos(2k1)
)

.

(64)

Then we set a23 > 1 and assume z2 6= −1. We then find

a3 = − coth(t),

a2 =
sin(2s)

sinh(t) (cos(2s) + cosh(2k1))
,

b2 =
sinh(2k1)

sinh(t) (cos(2s) + cosh(2k1))
,

r =
ek2

sinh(t)
√

cos(2s) + cosh(2k1)
,

a6 + ib6 =
k3 + ik4

ρ

√

a23 − 1
(

1 + z̄2
)− 1

2 .

We obtain

γ1 =
coth(t)(k3 + ik4) cos(s− ik1) +

(

∂k1
∂v

− i∂k1
∂u

)

ρ
,

a1 =
2

2
3 e

2
3
k2

3 sinh(t)2 (cos(2s) + cosh(2k1))
2

(

(cos(2s) + cosh(2k1))(ρ1
∂k2
∂v

+ ρ2
∂k2
∂u

)

+ sin(2s)(ρ1
∂k1
∂u

− ρ2
∂k1
∂v

)− sinh(2k1)(ρ1
∂k1
∂v

+ ρ2
∂k1
∂u

)

+ sinh(2k1) coth(t) (cos(s) cosh(k1)(k4ρ2 − k3ρ1) + sin(s) sinh(k1)(k4ρ1 + k3ρ2))
)

,

b1 =
2

2
3 e

2
3
k2

3 sinh(t)2 (cosh(2s) + cos(2k1))
2

(

(cosh(2s) + cos(2k1))(ρ2
∂k2
∂v

− ρ1
∂k2
∂u

)

+ sin(2s)(ρ2
∂k1
∂u

+ ρ1
∂k1
∂v

) + sinh(2k1)(ρ1
∂k1
∂u

− ρ2
∂k1
∂v

)
)

− sinh(2k1) coth(t) (sin(s) sinh(k1)(k3ρ1 − k4ρ2) + cos(s) cosh(k1)(k4ρ1 + k3ρ2))
)

.
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The functions {k1, k2, k3, k4} have to satisfy

∂k4
∂u

− ∂k3
∂v

= 2 tanh(k1)

(

k3
∂k1
∂v

− k4
∂k1
∂u

)

,

∂k4
∂v

+
∂k3
∂u

= −2 coth(k1)

(

k3
∂k1
∂u

+ k4
∂k1
∂v

)

,

∆k1 = − sinh(2k1)

(

2
1
3 e−

2
3
k2 +

k23 + k24
2

)

,

∆k2 = 3 ∗ 2 1
3 e−

2
3
k2
(

cosh(2k1)− e2k2
)

.

(65)

Finally, assume a23 > 1 and z2 = −1. Then we find

a3 = − coth(t),

a6 =
ek1 cos(5

3
s)

sinh(t)2
,

b6 = ±e
k1 sin(5

3
s)

sinh(t)2
,

r =
ek2

sinh(t)
.

We obtain for b2 =
√

a23 − 1 that

γ1+ =
5ek1+

5si
3 coth(t) + e

2k1+k2
5

+ 2si
3

(

(∂k2
∂v

− 3∂k1
∂v

)− i(∂k2
∂u

− 3∂k1
∂u

)
)

5 sinh(t)
,

a1+ =
−ek1 cos(5s

3
) coth(t) + e

2k1+k2
5

(

cos(2s
3
)∂k2
∂v

+ sin(2s
3
)∂k2
∂u

)

3 sinh(t)
,

b1+ =
−ek1 sin(5s

3
) coth(t)− e

2k1+k2
5

(

cos(2s
3
)∂k2
∂u

− sin(2s
3
)∂k2
∂v

)

3 sinh(t)
,

and for b2 = −
√

a23 − 1 we obtain

γ1− =
5ek1−

5si
3 coth(t) + e

2k1+k2
5

− 2si
3

(

(3∂k1
∂v

− ∂k2
∂v

)− i(3∂k1
∂u

− ∂k2
∂u

)
)

5 sinh(t)
,

a1− =
ek1 cos(5s

3
) coth(t) + e

2k1+k2
5

(

cos(2s
3
)∂k2
∂v

− sin(2s
3
)∂k2
∂u

)

3 sinh(t)
,

b1− =
−ek1 sin(5s

3
) coth(t)− e

2k1+k2
5

(

cos(2s
3
)∂k2
∂u

+ sin(2s
3
)∂k2
∂v

)

3 sinh(t)
.

Solving the other Gauss equations results in the relations

∆k1 = e−
2
5
(2k1+k2)

(

6 + 2e2k1 − 2e2k2
)

,

∆k2 = e−
2
5
(2k1+k2)

(

8 + e2k1 − 6e2k2
)

.
(66)
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These equations are valid for both b2 = ±
√

a23 − 1. We can conclude with the following
proposition.

Theorem 5.3. Each special Lagrangian submanifold of CH4 with SO(2)⋊ S3-symmetry
where the only integral distribution containing N1 is the whole tangent bundle, can be
constructed in the way above using functions {k1, k2, k3, k4} subject to (64) in case a23(0) <
1, subject to (65) in case a23(0) > 1, or functions {k1, k2} subject to (66) when a23(0) > 1
and z2 = −1. Conversely, each such a construction results in such a submanifold, unique
up to local isometry.
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