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Abstract. We prove a Bonnet-type existence and uniqueness theorem for almost complex
surfaces in the nearly Kähler manifold S3×S3. The proof uses a local correspondence between

almost complex surfaces in S3 × S3 and surfaces in R3 that satisfy the Wente H-equation.
Furthermore we give a complete classification of flat almost complex surfaces.

1. Introduction

Nearly Kähler manifolds are almost Hermitian manifolds, with almost complex structure J ,
for which the tensor field G = ∇J is skew-symmetric. A nearly Kähler manifold is called strict
nearly Kähler if furthermore ∇XJ 6= 0 for every non-zero vector X. In particular, the almost
complex structure of a strict nearly Kähler manifold is non-integrable and its fundamental 2-form
is non-closed, in contrast with Kähler manifolds. They arise naturally as one to the sixteen Gray-
Hervella classes of of almost Hermitian manifolds [?]. Probably the most known and simplest
example of a nearly Kähler manifold is the 6-dimensional sphere, whose almost complex structure
J can be defined in terms of the vector cross product on R7. In recent work of Butruille [?] it was
proven that the only homogeneous 6-dimensional nearly Kähler manifolds are S6 , S3×S3, CP 3

and the flag manifold SU(3)/U(1) × U(1). These spaces are compact 3-symmetric spaces and
they are the only known compact nearly Kähler manifolds in dimension 6.

A natural class of submanifolds of nearly Kähler manifolds are the almost complex submani-
folds, also known as pseudoholomorphic curves. Almost complex submanifolds are submanifolds
for which J sends tangent vectors on tangent one. Podestà and Spiro [?] proved that strict nearly
Kähler manifolds of dimension 6 do not admit any 4-dimensional almost complex submanifolds.
This fact was already proven by Gray for the nearly Kähler S6 ([?]). Hence the only almost
complex submanifolds are surfaces. Almost complex surfaces in the nearly Kähler manifold S6

have been extensively studied by many authors (see e.g. [?], [?], [?], [?], [?], [?]) and more recently
Xu [?] studied these surfaces in the nearly Kähler CP 3.

Almost complex surfaces in S3 ×S3 were first studied in [?]. In this study an almost product
structure P plays an important role. If M is an almost complex surface in S3×S3 with metric g
and complex coordinate z on M , then Λ dz2 = g(P∂z, ∂z) dz

2 defines a holomorphic quadratic
differential on the surface. There is a local correspondence between almost complex surfaces
in S3 × S3 and surfaces X in R3 satisfying the Wente H-equation ([?])

Xuu +Xvv = − 4√
3
Xu ×Xv.

The holomorphic differential Λ dz2 on M vanishes if and only if the coordinate z = u + iv
is conformal on the H-surface X, that is, |Xu| = |Xv| and 〈Xu, Xv〉 = 0. (Note that z is
a conformal coordinate for the almost complex surface but it is not necessarily conformal for
the associated H-surface.) In particular if Λ dz2 vanishes on the almost complex surface, the
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corresponding Wente H-surface is a surface of constant mean curvature (Theorem 3.10 in [?]).
Using this fact and a well-known theorem of H. Hopf on constant mean curvature surfaces in R3

it was then proven that almost complex 2-spheres in S3 × S3 are totally geodesic.
Now the main results of the present paper can be stated. Firstly, we have the following

Bonnet-type existence and uniqueness theorems for almost complex surfaces in S3 × S3.

Theorem 1.1. Let U ⊂ R2 be a simply connected open set and z a complex coordinate on U .
Suppose we have a metric g and two functions ω : U → R and µ : U → C such that g(∂z, ∂z̄) = eω

and ω > 0. Moreover suppose that ω and µ satisfy

ωzz̄ =
e−ω

2 sinhω
|ωz|2 +

4

3
sinhω(1− |µ|2),(1)

µz̄ =
ωzµ̄− eωµωz̄

2 sinhω
.(2)

Then there is an almost complex immersion φ : U → S3 × S3 with Λ = 1 and with an adapted
frame

∂z, ∂z̄, N, N̄ ,G(∂z, P∂z̄), G(∂z̄, P∂z)

such that its second fundamental form h(∂z, ∂z) is

h(∂z, ∂z) =
−ωz

eω − e−ω
N̄ + µG(∂z̄, P∂z).

Moreover, two such almost complex immersions are the same up to an isometry of S3 × S3.

Theorem 1.2. Let U ⊂ R2 be a simply connected open set and z a complex coordinate on U .
Suppose we have a metric g and two functions ω : U → R and µ : U → C such that g(∂z, ∂z̄) = eω.
Moreover suppose that ω and µ satisfy the equations

ωzz̄ =
2

3
eω(|µ|2 − 1),

µz̄ = −ωz̄µ.

Then there is an almost complex immersion φ : U → S3 × S3 with vanishing differential Λ dz2

and an adapted frame ∂z, ∂z̄, P∂z, P∂z̄, G(∂z, P∂z̄), G(∂z̄, P∂z) such that the second fundamental
form is

h(∂z, ∂z) = µG(∂z̄, P∂z).

Moreover, two such almost complex immersions are the same up to an isometry of S3 × S3.

It is interesting to note that the equations in Theorem 1.2 can be rewritten, by choosing a
suitable coordinate z, as the sinh-Gordon equation ωzz̄ + 4

3 sinhω = 0. This is in accordance
with the correspondence between almost complex surfaces with vanishing holomorphic differential
Λ dz2 and constant mean curvature surfaces in R3 (Theorem 3.10 in [?]).

Secondly we obtain a complete classification of flat almost complex surfaces in S3×S3, which
consists of a 2-parameter family of flat almost complex surfaces. Precisely, we prove

Theorem 1.3. Any flat almost complex surface in S3×S3 must be an open part of the following
2-parameter family of homogenous tori f(u, v) = (p(u, v), q(u, v)) with

p(u, v) = (

√
1 + a

2
ei(c1u+c2v),

√
1− a

2
ei(c3u+c4v)),

and

q(u, v) = (

√
1 + b

2
ei(b1u+b2v),

√
1− a

2
ei(b3u+b4v)) ∗ i,

where ∗ denotes the quaternion multiplication, (a, b) ∈]−1, 1[×]−1, 1[ and c1, c2, c3, c4, b1, b2, b3, b4
are constants determined by a, b (see (44) - (51)).
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We conclude the introduction with an outline of the article. In Section 2 we set notations
and recall the basic properties of the nearly Kähler structure on S3 × S3. We discuss the nearly
Kähler structure, the almost product structure P and their relation to S3 × S3 equipped with
the canonical product metric structure. In Section 3 we provide some properties on almost
complex surfaces and recall the the correspondence between almost complex surfaces in S3 × S3

and solutions of the Wente H-equation. In Section 4 we introduce the adapted frame on almost
complex surfaces in S3 × S3 and discuss its existence. In the final two sections we prove our
results stated above.

2. The nearly Kähler S3 × S3

The 4-dimensional Euclidean space R4 can naturally be identified to the set of quaternions.
The 3-sphere S3 then is the set of all unit quaternions. The vector fields given by X1(p) = pi,
X2(p) = pj and X3(p) = pk at p ∈ S3, where i, j, k are the standard basis of unit quaternions,
form a basis of tangent vector fields. Therefore any tangent vector in TpS

3 can be expressed
as pα where α is an imaginary quaternion. In particular, if X ∈ TpS3, then qp−1X is a vector
in TqS

3.
We identify T(p,q)(S

3 × S3) with TpS
3 ⊕ TqS3 to write a tangent vector at (p, q) as Z(p, q) =(

U(p, q), V (p, q)
)

or just Z = (U, V ). The almost complex structure J on S3 × S3 is given by

JZ(p,q) =
1√
3

(
2pq−1V − U,−2qp−1U + V

)
for a vector Z in T(p,q)(S

3 × S3) (see [?]); it is straightforward to check that J2 = −Id. The

nearly Kähler metric g on S3 × S3 is then defined as the Hermitian metric associated to the
standard Euclidean product metric:

g(Z,Z ′) =
1

2
(〈Z,Z ′〉+ 〈JZ, JZ ′〉)

=
4

3
(〈U,U ′〉+ 〈V, V ′〉)− 2

3

(
〈p−1U, q−1V ′〉+ 〈p−1U ′, q−1V 〉

)
.

In the first equation 〈·, ·〉 stands for the product metric on S3×S3 and in the second one it stands
for the Euclidean metric on S3. By definition J is compatible with g: g(JZ, JZ ′) = g(Z,Z ′).
The metric g only differs up to a constant factor from the one introduced in [?]. In [?] the factor
was chosen such that the standard basis on S3 × S3 has unit volume. Here and in [?] we have
chosen the factor 1

2 for the sake of simplicity. We mention that the isometries of (S3×S3, g) are
given by

F : S3 × S3 → S3 × S3 : (p, q)→ (apc−1, bqc−1),

where a, b and c are unit quaternions.
We write the Levi-Civita connection of (S3 × S3, g) as ∇̃ and the tensor field ∇̃J as G.

Endowed with the almost Hermitian structure (g, J), S3×S3 is nearly Kähler, which means that
the tensor field G is skew-symmetric. The following properties can be deduced from the nearly
Kähler property.

G(X,Y ) +G(Y,X) = 0,(3)

G(X,JY ) + JG(X,Y ) = 0,(4)

g(G(X,Y ), Z) + g(G(X,Z), Y ) = 0.(5)

The almost product structure P on S3 × S3 is an endomorphism defined by

PZ = (pq−1V, qp−1U).
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If U = pα and V = qβ, then PZ = (pβ, qα). The almost product structure can be interpreted
in the following way. We start with the vector (U, V ) at (p, q). First left translate it to the
point (1, 1) to get the vector (p−1U, q−1V ). Next we switch the components and finally we left
translate this vector back to the point (p, q) and we obtain (pq−1V, qp−1U). It is straightforward
to show that

(6) P 2 = Id, PJ = −JP, g(PZ, PZ ′) = g(Z,Z ′).

Thus P is also symmetric with respect to g. The tensor field ∇̃P does not vanish identically,
so P is not a product structure, but it satisfies the following properties.

Lemma 2.1. For tangent vectors X, Y ∈ T (S3 × S3) one has

PG(X,Y ) +G(PX,PY ) = 0,(7)

G(X,PY ) + PG(X,Y ) = −2J(∇̃XP )Y,(8)

(∇̃XP )JY = J(∇̃XP )Y.(9)

The Riemann curvature tensor R̃ on (S3 × S3, g) is given by

R̃(X,Y )Z =
5

12

(
g(Y,Z)X − g(X,Z)Y

)
+

1

12

(
g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

)
+

1

3

(
g(PY,Z)PX − g(PX,Z)PY

+ g(JPY,Z)JPX − g(JPX,Z)JPY
)
,

(10)

and from this one can show that the tensors ∇̃G and G satisfy

(∇̃G)(X,Y, Z) =
1

3
(g(X,Z)JY − g(X,Y )JZ − g(JY, Z)X),(11)

g
(
G(X,Y ), G(Z,W )

)
=

1

3

(
g(X,Z)g(Y,W )− g(X,W )g(Y, Z)

+ g(JX,Z)g(JW, Y )− g(JX,W )g(JZ, Y )
)
,(12)

G
(
X,G(Y,Z)

)
=

1

3

(
g(X,Z)Y − g(X,Y )Z + g(JX,Z)JY − g(JX, Y )JZ

)
.(13)

In particular, it follows that S3×S3 is of constant type 1/3 ([?]). We note that similar expressions
hold on any 6-dimensional strictly nearly Kähler manifold.

Now we will give the relation between the geometry of the nearly Kähler manifold (S3×S3, g)
and the product manifold (S3 ×S3, 〈·, ·〉) endowed with the Euclidean product metric 〈·, ·〉. The
equations in this paragraph will be used in Section 6.2.

The almost product structure P can be expressed in terms of the usual product structureQZ =
Q(U, V ) = (−U, V ) and vice versa:

QZ =
1√
3

(2PJZ − JZ),(14)

PZ =
1

2
(Z −

√
3QJZ).(15)

Using these equations the Euclidean metric 〈·, ·〉 can be expressed in terms of g and P :

(16) 〈Z,Z ′〉 =
3

8

(
g(Z,Z ′) + g(QZ,QZ ′)

)
= g(Z,Z ′) +

1

2
g(Z,PZ ′),
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and consequently

(17) 〈Z,QZ ′〉 =

√
3

2
g(Z,PJZ ′).

We can now show the relation between the Levi-Civita connections ∇̃ of g and ∇E of the
Euclidean product metric 〈·, ·〉 on S3 × S3.

Lemma 2.2. The relation between the nearly Kähler connections ∇̃ and the Euclidean connec-
tion ∇E is

(18) ∇EXY = ∇̃XY +
1

2

(
JG(X,PY ) + JG(Y, PX)

)
.

Proof. It is easy to check that the right hand side of (18) defines a connection and we denote

it by ∇̂. The connection ∇̂ is symmetric, since 1
2

(
JG(X,PY ) + JG(Y, PX)

)
is symmetric. We

now only have to show that ∇̂ is compatible with the Euclidean metric 〈·, ·〉. Equations (6), (7)
and (16) give

〈∇̂XY,Z〉+ 〈∇̂XZ, Y 〉

= g(∇̃XY, Z) + g(∇̃XZ, Y )

+
1

2

(
g(∇̃XY, PZ) + g(∇̃XZ,PY ) + g(JG(X,PY ), Z)

+ g(JG(Y, PX), Z) + g(JG(X,PZ), Y ) + g(JG(Z,PX), Y )
)

+
1

4

(
g(JG(PX, Y ), Z) + g(JG(PY,X), Z)

+ g(JG(PX,Z), Y ) + g(JG(PZ,X), Y )
)

= Xg(Y, Z) +
1

2

(
g(∇̃XY, PZ) + g(∇̃XZ,PY )

)
+

1

4

(
g(JG(X,PY ), Z) + g(JG(X,PZ), Y )

)
,

and then by (8) and (16) we obtain

〈∇̂XY,Z〉+ 〈∇̂XZ, Y 〉 = Xg(Y,Z) +
1

2

(
g(∇̃XY, PZ) + g(∇̃XZ,PY )

+ g(∇̃XPY,Z)− g(∇̃XY, PZ)
)

= Xg(Y, Z) +
1

2
Xg(PY,Z)

= X〈Y, Z〉.
This finishes the proof of the lemma. �

Remark. Using this lemma and (15) one can show that (∇EXQ)Y = 0 implies equation (9)
and vice versa. In this sense P really is the “nearly Kähler analogue” of the Euclidean product
structure Q.

3. Almost complex surfaces in S3 × S3

An almost complex submanifold M in a nearly Kähler manifold M̃ is a submanifold such
that J maps tangent vectors to tangent vectors, i.e., the tangent bundle TM is J-invariant.
Consequently J maps normal vectors on normal ones. It was proven by Podestà and Spiro
that 6-dimensional strictly nearly Kähler manifolds do not admit 4-dimensional almost complex
submanifolds [?], hence the almost complex submanifolds of S3 × S3 are surfaces.
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Denote the Levi-Civita connection on M by ∇ and the normal connection on the normal
bundle T⊥M by ∇⊥. The Gauss and Weingarten formulas and the basic properties of G imply

∇XJX = J∇XX, h(X, JY ) = Jh(X,Y ),(19)

AJξX = JAξX = −AξJX, G(X, ξ) = ∇⊥XJξ − J∇⊥Xξ,(20)

for X, Y ∈ TM and ξ ∈ T⊥M , where h denotes the second fundamental form and Aξ denotes
the shape operator (see e.g. [?] or [?]). Hence M is minimal and nearly Kähler. Furthermore,
since M is an almost complex surface, the tangent space is spanned by a unit vector X and
JX. Hence ∇̃J vanishes on M , so M is in fact Kähler. So if X,Y are tangent vectors on
an almost complex surface in S3 × S3, then G(X,Y ) = 0 and thus equation (8) simplifies to

(∇̃XP )Y = 1
2JG(X,PY ).

Next we recall the correspondence theorem from [?]. Let φ : M → S3 × S3 : (u, v) 7→(
p(u, v), q(u, v)

)
be an almost complex surface, where z = u + iv are isothermal coordinates

on M . We may assume that φv = Jφu by interchanging u and v, if necessary. Furthermore, as
p and q are maps into S3, there are well defined local functions α̃, β̃, γ̃ and δ̃ from M to ImH
such that

pu = pα̃, pv = pβ̃, qu = qγ̃, qv = qδ̃.(21)

Then φv = Jφu gives

(22) γ̃ =

√
3

2
β̃ +

1

2
α̃, δ̃ =

1

2
β̃ −
√

3

2
α̃.

The integrability conditions puv = pvu and quv = qvu written in terms of α̃ and β̃ become

α̃v − β̃u = 2α̃× β̃, α̃u + β̃v =
2√
3
α̃× β̃.(23)

Setting α = cos θα̃+sin θβ̃ and β = − sin θα̃+cos θβ̃ with θ = 2π/3, these two equations become

(24) αv = βu, αu + βv = − 4√
3
α× β.

Assume now that we are working on a simply connected neighborhood. Then any closed
1-form is exact and hence there exists a R3-valued function X such that Xu = α, Xv = β and

(25) Xuu +Xvv = − 4√
3
Xu ×Xv.

This equation is known as the H-surface equation (cf. [?]). The correspondence theorem can
now be formulated as

Theorem 3.1. There is locally a one-to-one correspondence between almost complex surfaces
in S3×S3 and solutions of the general H-system equation. Moreover, two solutions are congruent
in R3 if and only if the associated solutions in S3 × S3 are congruent.

On an almost complex surface, a quadratic differential Λ dz2 is defined by g(Pφz, φz) dz
2. The

Cauchy-Riemann-like equations (24) imply that Λ dz2 is a holomorphic differential. In Section 5
we show this fact using a straightforward calculation (Lemma 5.2).

4. An adapted frame for almost complex surfaces

Consider an almost complex surface M in S3×S3 and let z = u+ iv be a complex coordinate
on M . We will define a suitable frame adapted to the almost complex surface M in terms of
the almost complex product structure P and the tensor field G = ∇̃J . This frame will be used
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to prove the existence and uniqueness theorems (Theorem 1.1 and 1.2) in the next section. The
frame can only be defined at points where a certain condition is satisfied.

Define ∂z = 1
2 (∂u − i∂v) and ∂z̄ = 1

2 (∂u + i∂v) as usual. Then the metric g on the surface M
is given by

g(∂z, ∂z) = g(∂z̄, ∂z̄) = 0, g(∂z, ∂z̄) = eω,

for some local function ω. It follows from the well-known Koszul formula that the Levi-Civita
connection on the surface is

∇∂z∂z̄ = ∇∂z̄∂z = 0, ∇∂z∂z = ωz∂z, ∇∂z̄∂z̄ = ωz̄∂z̄.

The Gauss curvature is K = −e−ωωzz̄ and the minimality of M implies that h(∂z, ∂z̄) = 0. We
will write Λ = g(P∂z, ∂z). Moreover

g(P∂z, ∂z̄) =
1

4

(
g(P∂u, ∂u) + g(P∂v, ∂v)

)
=

1

4

(
g(P∂u, ∂u)− g(JP∂u, J∂u)

)
= 0.

From this it follows that

P∂z = e−ωΛ∂z̄ +N, P∂z̄ = e−ωΛ̄∂z + N̄ ,

where N is the normal part of P∂z. The almost product structure P preserves the metric, so
g(P∂z, P∂z) = 0 and g(P∂z, P∂z̄) = eω, which gives

(26) g(N,N) = 0, g(N, N̄) = eω − |Λ|2e−ω.
The vectors G(∂z, P∂z̄) and G(∂z̄, P∂z) are orthogonal to ∂z, ∂z̄, P∂z and P∂z̄, which is easily

seen using equation (5), and thus they are also orthogonal to N and N̄ . Writing out G(∂z, P∂z)
and using ∂v = J∂u and the basic properties of G and P , one gets

G(∂z, P∂z) =
1

4

(
G(∂u, P∂u)−G(∂v, P∂v)

)
− i

4

(
G(∂u, P∂v) +G(∂v, P∂u)

)
=

1

4

(
G(∂u, P∂u)−G(∂u, P∂u)

)
+
i

4

(
G(∂u, JP∂u)−G(J∂u, P∂u)

)
= 0,

and a similar calculation gives

G(∂z, P∂z̄) =
1

2

(
G(∂u, P∂u) + iG(∂u, PJ∂u)

)
.

From equation (12) we get

(27) g(G(∂z, P∂z̄), G(∂z̄, P∂z)) =
2

3
(e2ω − |Λ|2)

and

(28) g(G(∂z, P∂z̄), G(∂z, P∂z̄)) = 0.

So summing up, we have found that

F =
{
∂z, ∂z̄, N, N̄ ,G(∂z, P∂z̄), G(∂z̄, P∂z)

}
gives an adapted frame to the almost complex surface. The vectors are orthogonal, but do not
have the same length. Also note that the frame only exists at points where |Λ|2 6= e2ω. At points
where the equality |Λ|2 = e2ω holds the normal N is zero. At these points P preserves the tangent
space: PTM = TM . In Theorem 4.2 of [?] the almost complex surfaces with PTM = TM have
been classified; such a surface is locally congruent to the torus f(u, v) = (cosu + i sinu, cos v +
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i sin v). Therefore we will restrict ourselves to the open subset of M on which |Λ|2 6= e2ω and we
may assume that it is dense in M .

5. Proofs of Theorem 1.1 and Theorem 1.2

In this section we will prove Theorem 1.1 and Theorem 1.2. The proof consists of three steps.
First we write the second fundamental form h in terms of the normal vectors N, . . . , G(∂z̄, P∂z).
Next we deduce the compatibility equations for almost complex surfaces. In this second step
the proof will be split into two cases: (a) Λ is nowhere zero and (b) Λ vanishes. Case (a) gives
Theorem 1.1 and case (b) gives Theorem 1.2. In the last step we use the correspondence theorem
(Theorem 3.1) and verify that the compatibility conditions for a H-surface are the same as the
compatibility equations for almost complex surfaces. The proof then follows from the existence
and uniqueness theorem for differential equations and the correspondence theorem.

The equations (7) and (8) give two useful expressions that will be used frequently in this
section.

PG(∂z, P∂z̄) = G(∂z̄, P∂z), PG(∂z̄, P∂z) = G(∂z, P∂z̄),(29)

∇̃∂zP∂z = P ∇̃∂z∂z, ∇̃∂z̄P∂z̄ = P ∇̃∂z̄∂z̄.(30)

Consider the adapted frame F on the open subset of M where |Λ|2 6= e2ω.

Proposition 5.1. The second fundamental form is given by

(31) h(∂z, ∂z) = λN̄ + µG(∂z̄, P∂z)

with λ and µ local functions satisfying

(32) λ =
1

2

Λz − 2ωzΛ

eω − |Λ|2e−ω
,

2

3
(e2ω − |Λ|2)µ = g(h(∂z, ∂z), G(∂z, P∂z̄)).

Proof. Differentiating Λ with respect to z gives

Λz = g(∇̃∂zP∂z, ∂z) + g(P∂z, ∇̃∂z∂z)

= g(P ∇̃∂z∂z, ∂z) + g(P∂z, ωz∂z) + g(P∂z, h(∂z, ∂z))

= 2ωzΛ + 2g(h(∂z, ∂z), N),

(33)

where we used (30). Similarly, ∂zg(P∂z, ∂z̄) = 0 gives us

0 = g(∇̃∂zP∂z, ∂z̄) + g(P∂z, ∇̃∂z∂z̄)

= g((∇̃∂zP )∂z, ∂z̄) + g(P ∇̃∂z∂z, ∂z̄)
= ωzg(P∂z, ∂z̄) + g(Ph(∂z, ∂z), ∂z̄)

= g(h(∂z, ∂z), N̄).

Now we calculate the inner product of h(∂z, ∂z) and G(∂z̄, P∂z). Since the surface is almost
complex, Jh(∂z, ∂z) is equal to h(∂z, J∂z) = ih(∂z, ∂z), so we have

g(h(∂z, ∂z), G(∂z̄, P∂z)) = −g(G(∂z̄, h(∂z, ∂z)), P∂z)

= −g(∇̃∂z̄Jh(∂z, ∂z), P∂z)− g(∇̃∂z̄h(∂z, ∂z), JP∂z)

= −ig(∇̃∂z̄h(∂z, ∂z), P∂z) + ig(∇̃∂z̄h(∂z, ∂z), P∂z)

= 0.

Note that by equations (27) and (31) the complex valued function µ has to satisfy the second
equation of (32). We complete the proof of Proposition 5.1. �



FLAT ALMOST COMPLEX SURFACES IN S3 × S3 9

As we mentioned before, the differential Λ dz2 is holomorphic (Theorem 3.1). This fact follows
from equations (24) and (25), but it can also be shown by an easy calculation.

Lemma 5.2. The function Λ = g(P∂z, ∂z) is holomorphic.

Proof. By the first equation of (30), we have Λz̄ = 2g(∇∂z∂z̄, P∂z) = 2g(h(∂z, ∂z̄), P∂z) = 0. �

We now distinguish two cases. The function Λ is holomorphic, so it is zero at isolated points or
identically zero. In the latter case |Λ|2 = 0 and since e2ω is always positive, the frame F always
exists on the surface. In the former case we can take a local coordinate system, on a possibly
smaller neighbourhood, such that Λ = 1. The frame F then only exists at points where ω > 0.
As we have pointed out in Section 4 we can assume that the set of points where ω > 0 is an open
dense subset of M .
Case 1. Λ ≡ 1. From now on we assume that Λ = 1. In this case (32) simplifies to

λ =
−ωz

eω − e−ω
,

2

3
(e2ω − 1)µ = g(h(∂z, ∂z), G(∂z, P∂z̄)).

The next step is to calculate ωzz̄ and µz̄. For this we need the following lemma.

Lemma 5.3. The normal covariant derivatives of the normal vectors are

∇⊥∂z̄N = −e−ωλ̄N − e−ωµ̄G(∂z, P∂z̄) +
i

2
G(∂z̄, P∂z),

∇⊥∂z̄N̄ =
1

2
ωz̄e

ω cschωN̄ + µ̄G(∂z̄, P∂z),

∇⊥∂z̄G(∂z, P∂z̄) = −2

3
eωµ̄N − i

3
eωN̄ +

1

2
ωz̄e

ω cschωG(∂z, P∂z̄),

∇⊥∂z̄G(∂z̄, P∂z) =
2

3
µ̄N̄ +

1

2
ωz̄e

ω cschωG(∂z̄, P∂z).

Proof. The first two expressions can be calculated directly. Firstly we have

∇⊥∂z̄N = ∇̃∂z̄ (P∂z − e−ω∂z̄) +AN∂z̄

= (∇̃∂z̄P )∂z + e−ωωz̄∂z̄ − e−ω∇̃∂z̄∂z̄

=
1

2
JG(∂z̄, P∂z)− e−ωh(∂z̄, ∂z̄)

= −e−ωλ̄N − e−ωµ̄G(∂z, P∂z̄) +
i

2
G(∂z̄, P∂z).

From Proposition 5.1 we get

Ph(∂z, ∂z) = λ((1− e−2ω)∂z̄ − e−ωN) + µG(∂z, P∂z̄).

Therefore the second covariant derivative is

∇⊥∂z̄N̄ = ∇̃∂z̄ (P∂z̄ − e−ω∂z) +AN̄∂z̄

= P ∇̃∂z̄∂z̄ + ωz̄e
−ω∂z − e−ω∇̃∂z̄∂z +AN̄∂z̄

= Ph(∂z̄, ∂z̄)
⊥ + ωz̄(P∂z̄)

⊥

=
1

2
ωz̄e

ω cschωN̄ + µ̄G(∂z̄, P∂z).
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To obtain the third and fourth expression, we calculate the inner products of ∇⊥∂z̄G(∂z, P∂z̄)

and ∇⊥∂z̄G(∂z̄, P∂z) with the normal vectors. We already know that

g(∇⊥∂z̄G(∂z, P∂z̄), N) = −g(G(∂z, P∂z̄),∇⊥∂z̄N)

= − i
3

(e2ω − 1),

g(∇⊥∂z̄G(∂z, P∂z̄), N̄) = −g(G(∂z, P∂z̄),∇⊥∂z̄N̄)

= −2

3
µ̄(e2ω − 1).

From (28) it follows that g(∇⊥∂z̄G(∂z, P∂z̄), G(∂z, P∂z̄)) = 0. By equation (30) we have

g(∇⊥∂z̄G(∂z, P∂z̄), G(∂z̄, P∂z))

= g((∇̃∂z̄G)(∂z, P∂z̄), G(∂z̄, P∂z)) + g(G(∇̃∂z̄∂z, P∂z̄), G(∂z̄, P∂z))

+ g(G(∂z, ∇̃∂z̄P∂z̄), G(∂z̄, P∂z)).

Equation (11) says that (∇̃∂z̄G)(∂z, P∂z̄) is a linear combination of ∂z, ∂z̄, P∂z, P∂z̄ and therefore
the first term vanishes. The second term vanishes as well since ∇∂z̄∂z = 0. Equations (27), (31)
and (12) then give

g(∇⊥∂z̄G(∂z, P∂z̄), G(∂z̄, P∂z)) = g(G(∂z, P (∇∂z̄∂z̄ + h(∂z̄, ∂z̄)), G(∂z̄, P∂z))

=
2

3
ωz̄e

2ω.

Combining these equations with (26) and (27), one obtains the third expression. Finally we have

g(∇⊥∂z̄G(∂z̄, P∂z), N) = −g(G(∂z̄, P∂z),∇⊥∂z̄N) =
2

3
µ̄(eω − e−ω),

g(∇⊥∂z̄G(∂z̄, P∂z), N̄) = −g(G(∂z̄, P∂z),∇⊥∂z̄N̄) = 0,

g(∇⊥∂z̄G(∂z̄, P∂z), G(∂z̄, P∂z)) = 0,

g(∇⊥∂z̄G(∂z̄, P∂z), G(∂z, P∂z̄)) =
2

3
∂z̄(e

2ω − 1)− g(∇⊥∂z̄G(∂z, P∂z̄), G(∂z̄, P∂z))

=
2

3
ωz̄e

2ω.

These equations together with (26) and (27) give the last covariant derivative. �

The expression for the curvature tensor R̃ yields
(
R̃(∂z̄, ∂z)∂z

)⊥
= 2

3N̄ , so the Codazzi equa-

tion becomes ∇⊥∂z̄h(∂z, ∂z) = 2
3N̄ . It follows from Lemma 5.3 that

ωzz̄ sinhω−e
−ω

2
|ωz|2 −

4

3
sinh2 ω(1− |µ|2) = 0,

µz̄ +
eωµωz̄ − ωzµ̄

2 sinhω
= 0.

(34)

Case 2. Λ is identically zero. The calculations and expressions in this case are simpler. In this
case h(∂z, ∂z) = µG(∂z̄, P∂z), where

2

3
e2ωµ = g(h(∂z, ∂z), G(∂z, P∂z̄)).
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Using the same approach as in Lemma 5.3, we get

∇⊥∂z̄G(∂z̄, P∂z) = (∇̃G)(∂z̄, ∂z̄, P∂z) +G(∇̃∂z̄∂z̄, P∂z)

+G(∂z̄, ∇̃∂z̄P∂z) +AG(∂z̄,P∂z)∂z̄

= ωz̄G(∂z̄, P∂z) + µ̄G(G(∂z, P∂z̄), P∂z)

+
1

2
G(∂z̄, JG(∂z̄, P∂z)) +AG(∂z̄,P∂z)∂z̄

= ωz̄G(∂z̄, P∂z).

From the Codazzi equation it follows that

0 = ∇⊥∂z̄h(∂z, ∂z) = (µz̄ + ωz̄µ)G(∂z̄, P∂z).

Together with the Gauss equation R(∂z, ∂z̄, ∂z̄, ∂z) = R̃(∂z, ∂z̄, ∂z̄, ∂z) + ‖h(∂z, ∂z)‖2 we obtain

ωzz̄ +
2

3
eω(1− |µ|2) = 0,

µz̄ + ωz̄µ = 0.
(35)

In order to finish the proof, we will use the correspondence between almost complex surfaces
and H-systems (Theorem 3.1). We look at the equation

Xzz̄ =
2i√

3
Xz ×Xz̄.

The definition of g, the equations (22) and the fact that α, β and α̃, β̃ are equal up to a rotation
give

eω =
1

4

(
〈∂u, ∂u〉+ 〈∂v, ∂v〉

)
=

1

4

(
〈α̃, α̃〉+ 〈β̃, β̃〉+ 〈γ̃, γ̃〉+ 〈δ̃, δ̃〉

)
=

1

2

(
〈α̃, α̃〉+ 〈β̃, β̃〉

)
=

1

2

(
〈α, α〉+ 〈β, β〉

)
=

1

2

(
〈Xu, Xu〉+ 〈Xv, Xv〉

)
= 2〈Xz, Xz̄〉.

Moreover we know from Theorem 3.1

Λ = g(P∂z, ∂z) = 2ei
π
3 〈Xz, Xz〉.

So we have the relations

〈Xz, Xz̄〉 =
1

2
eω, 〈Xz, Xz〉 =

1

2
e−i

π
3 Λ.(36)

Case 1. Λ is not identically zero. By changing the coordinate system we may assume that Λ
and thus 〈Xz, Xz〉 are constant. Then 〈Xzz, Xz̄〉 = 1

2ωze
ω and 〈Xzz, Xz〉 = 0. One obtains the

system

Xzz̄ =
2i√

3
Xz ×Xz̄,

Xzz =
ωz

1− |Λ|2e−2ω
Xz −

e−ωωz
1− |Λ|2e−2ω

Λe−i
π
3 Xz̄ + ΩXz ×Xz̄.

for some local function Ω. We have

(Xzz̄)z = −
( ieiπ3√

3
Λ̄Ω +

2

3
eω
)
Xz +

( ieω√
3

Ω +
2

3
e−i

π
3 Λ
)
Xz̄

+
2i√

3

ωz
1− |Λ|2e−2ω

Xz ×Xz̄.
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Comparing this with (Xzz)z̄ we then get

Ωz̄ =
ωz̄

|Λ|2e−2ω − 1
Ω +

e−ωe−i
π
3 ωz

|Λ|2e−2ω − 1
ΛΩ̄,

0 = ωzz̄(|Λ|2e−2ω − 1) + |ωz|2|Λ|2e−2ω + eω(|Λ|2e−2ω − 1)2
(1

2
|Ω|2 − 2

3

)
.

If we set

Ω = − 2i√
3
e−i

π
6 µ, Λ = 1,

we see that the above compatibility conditions are the same as equations (34). Therefore such
an H-system indeed exists. Consequently we get a corresponding almost complex surface in S3×
S3.
Case 2. Λ is identically zero. If Λ vanishes, we obtain the system

Xzz = ωzXz + ΩXz ×Xz̄.

The derivatives (Xzz̄)z and (Xzz)z̄ are

(Xzz̄)z = −2

3
eωXz +

ieω√
3

ΩXz̄ +
2i√

3
ωzXz ×Xz̄

(Xzz)z̄ =
(
ωzz̄ −

eω

2
|Ω|2

)
Xz +

ieω√
3

ΩXz̄ +
(

Ωz̄ + ωz̄Ω +
2i√

3
ωz

)
Xz ×Xz̄.

The compatibility condition then gives

ωzz̄ =
eω

2

(
|Ω|2 − 4

3

)
, Ωz̄ + ωz̄Ω = 0.

So for Ω = 2√
3
µ we get the same equations as (35). This proves the existence and uniqueness

theorems.

6. Flat almost complex surfaces

In the last section we give a method to obtain all flat almost complex surfaces in S3×S3. There
is a 2-parameter family of flat almost complex surfaces and one isolated example that was already
described in [?]. Our proof consists of three steps. First we choose a suitable adapted frame for
the almost complex surfaces and determine the second fundamental form. For this, we calculate
several compatibility conditions. In the second step, we show that the components of the flat
surface are Clifford tori. This fact will be used in the final step to obtain a parametrization of
the flat almost complex surfaces.

6.1. Finding the second fundamental form. Let M be a flat almost complex surface. If
PTM = TM then the surface is locally congruent to the torus f(u, v) = (cosu+ i sinu, cos v +
i sin v) ( see Theorem 4.1 in [?]). So we will assume that PTM 6= TM . Choose a local frame
e1, e2 such that e1 is a maximum of g(Pu, u) for all unit vectors u and e2 = Je1. From a standard
argument it follows that g(Pe1, e2) = 0. Consider the adapted frame e1, . . . , e6 along M where

e3 = Pe1, e5 = G(e1, P e1),

e4 = Pe2 = −Je3, e6 = G(e1, P e2) = Je5.

By the assumption PTM 6= TM , these vectors are indeed linearly independent. Let a and b be
local functions such that the connection is given by

∇e1e1 = ae2, ∇e2e1 = −be2,

∇e1e2 = −ae1, ∇e2e2 = be1.
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As ∇ is torsion free, one has [e1, e2] = −ae1 + be2. The curvature is zero, so

(37) e1(b) + e2(a) = a2 + b2.

Furthermore if we write cos θ = g(Pe1, e1), then

Pe1 − cos θe1 = e3 − cos θe1, −J(Pe1 − cos θe1) = e4 + cos θe2

are normal vectors. By (5) the vectors e5 and e6 are also normal ones. We choose c1, c2, d1, d2

such that

h(e1, e1) = c1(e3 − cos θe1) + c2(e4 + cos θe2) + d1e5 + d2e6.

Since M is almost complex, Jh(e1, e1) = h(e1, e2) and h(e1, e1) = −h(e2, e2). Therefore

∇̃e1e1 = −c1 cos θe1 + (a+ c2 cos θ)e2 + c1e3 + c2e4 + d1e5 + d2e6,

∇̃e1e2 = −(a+ c2 cos θ)e1 − c1 cos θe2 + c2e3 − c1e4 − d2e5 + d1e6,

∇̃e2e1 = −c2 cos θe1 − (b+ c1 cos θ)e2 + c2e3 − c1e4 − d2e5 + d1e6,

∇̃e2e2 = (b+ c1 cos θ)e1 − c2 cos θe2 − c1e3 − c2e4 − d1e5 − d2e6.

Using equation (8) we obtain the covariant derivatives of e3 and e4. For example, for ∇̃e1e3 =

∇̃e1Pe1, we have

∇̃e1Pe1 = P ∇̃e1e1 +
1

2
G(e1, P e2).

One obtains

∇̃e1e3 = c1e1 + c2e2 − c1 cos θe3 + (a+ c2 cos θ)e4 + d1e5 + ( 1
2 − d2)e6,

∇̃e1e4 = c2e1 − c1e2 − (a+ c2 cos θ)e3 − c1 cos θe4 − ( 1
2 + d2)e5 − d1e6,

∇̃e2e3 = c2e1 − c1e2 − c2 cos θe3 − (b+ c1 cos θ)e4 + ( 1
2 − d2)e5 − d1e6,

∇̃e2e4 = −c1e1 − c2e2 + (b+ c1 cos θ)e3 − c2 cos θe4 − d1e5 + ( 1
2 + d2)e6.

The compatibility of the Levi-Civita connection ∇̃ with the metric gives

ei(g(e1, ek)) = g(∇̃eie1, ek) + g(e1, ∇̃eiek)

for i = 1, 2 and k = 3, 4. These four equations give

e1(θ) = −2c1 sin θ, c1 = b cot θ csc θ,

e2(θ) = −2c2 sin θ, c2 = a cot θ csc θ.

Using equation (11), we can compute the covariant derivatives of e5 and e6. For example, for

∇̃e1e5 = ∇̃e1G(e1, P e1) the calculation goes as follows:

∇̃e1G(e1, P e1) = (∇̃e1G)(e1, P e1) +G(∇̃e1e1, P e1) +G(e1, ∇̃e1Pe1)

= 1
3 (g(e1, P e1)e2 − JPe1) +G(∇̃e1e1, P e1) +G(e1, ∇̃e1Pe1).
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We obtain

∇̃e1e5 = 1
3d1(cos θ − 1)e1 + 1

6 (2d2(1 + cos θ) + cos θ)e2

+ 1
3d1(cos θ − 1)e3 + 1

6 (1 + 2d2(1 + cos θ))e4 − 2b cot2 θe5,

∇̃e1e6 = 1
6 (cos θ − 2d2(1 + cos θ))e1 + 1

3d1(cos θ − 1)e2

+ 1
6 (2d2(1 + cos θ)− 1)e3 + 1

3d1(1− cos θ)e4 − 2b cot2 θe6,

∇̃e2e5 = 1
6 (2d2(1− cos θ) + cos θ)e1 + 1

3d1(1 + cos θ)e2

+ 1
6 (2d2(1− cos θ)− 1)e3 + 1

3d1(1 + cos θ)e4 − 2a cot2 θe5,

∇̃e2e6 = − 1
3d1(1 + cos θ)e1 + 1

6 (2d2(1− cos θ)− cos θ)e2

+ 1
3d1(1 + cos θ)e3 + 1

6 (2d2(cos θ − 1)− 1)e4 − 2a cot2 θe6.

We have R̃(e1, e2)e1 = ∇̃e1∇̃e2e1 − ∇̃e2∇̃e1e1 − ∇̃[e1,e2]e1. The left hand side is given by the

expression (10) for R̃ and the right hand side can be written using all covariant derivatives above.
The e1-, e2-, e5- and e6-components of this equation then give

0 = cot2 θ
(
e1(a)− e2(b)

)
,(38a)

0 =
2

3
(d2

1 + d2
2 − 1) + csc2 θ

(
(a2 + b2)(2 csc2 θ − 3) + e2(a) + e1(b)

)
,(38b)

0 = 2
ad1 + bd2

cos θ − 1
+ e2(d1) + e1(d2),(38c)

0 = e1(d1)− e2(d2)− (bd1 − ad2) sec2(
θ

2
).(38d)

Note that the second equation (38b) together with (37) becomes

1

3
=

1

3
(d2

1 + d2
2) + csc2 θ cot2 θ(a2 + b2).

In view of this equation we write from now on

a =
1√
3

sin θ tan θ cosφ1 cosα, d1 = cosφ2 sinα,

b =
1√
3

sin θ tan θ sinφ1 cosα, d2 = sinφ2 sinα

and furthermore we introduce the variables

U = e1(α) +
1√
3

sinα cos(φ1 − 2φ2),

V = e2(α)− 1√
3

sinα sin(φ1 − 2φ2).

Substitute U and V in (37), (38a), (38c) and (38d) and solve this system of equations to obtain
the derivatives of φ1 and φ2:

e1(φ1) = 1
6

(√
3 cosα sec θ cosφ1(7 + cos 2θ) + 2 tanα(

√
3 sinα cos(φ1 − 2φ2) + 3V )

)
,

e1(φ2) = 1
6

(
−
√

3 cosα sec θ sinφ1(7 + cos 2θ) + 2 tanα(
√

3 sinα sin(φ1 − 2φ2)− 3U)
)
,

e2(φ1) = −V cotα+ 1√
3
(cosα cos(φ1 − 2φ2) + 2 cosφ1 sec θ),

e2(φ2) = U cotα+ 1√
3

cosα(sin(φ1 − 2φ2)− 2 sec θ sinφ1).
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Now we will calculate several compatibility conditions to obtain Lemma 6.1. The compatibility
conditions e1(e2(φi))− e2(e1(φi)) = [e1, e2](φi) give

1

24

(
24(U2 + V 2) sec2 α+ cos2 α sec2 θ(103 + 28 cos 2θ − 3 cos 4θ)

+ 8 secα tanα(3 cosα(e1(U) + e2(V )) + sin 3α+
√

3(V cos(φ1 − 2φ2)− U sin(φ1 − 2φ2)))

+ 8 tan2 α+ 4 tan θ(−2
√

3 sinα sin θ(V cosφ1 + U sinφ1)− 3 cos2 α(7 + cos 2θ) tan θ)
)

= 0,

1

3

(
2 cos 2α− 3 cotα(e1(U) + e2(V )) + cos2 α sec2 θ(7 + cos 2θ)

+ cscα(3 cscα(U2 + V 2) +
√

3(−V cos(φ1 − 2φ2) + U sin(φ1 − 2φ2))

+
√

3 cosα cotα sin θ tan θ(V cosφ1 + U sinφ1)− 6 cos2 α tan2 θ
)

= 0.

Multiplying the second expression by tan2 α and adding it to the first one, gives us

6 + 2 sec2 α(U2 + V 2 − 1

3
) = 0,

or U2 + V 2 = 1
3 cos2 α(sec2 α− 9). Since U2 + V 2 is positive, α ∈ [arccos( 1

3 ), arccos(− 1
3 )].

We denote

r =
(1

3
cos2 α(sec2 α− 9)

)1/2

and U = r cos δ and V = r sin δ. The compatibility conditions for φ2 and α yield two equations
linear in e1(δ) and e2(δ). Solving these two equations gives

e1(δ) =
secα

8
√

3(7 + 9 cos 2α)2

(
A cos δ −B sin δ

)
,

e2(δ) =
secα

8
√

3(7 + 9 cos 2α)2

(
A sin δ +B cos δ

)
with

A = (590 + 927 cos 2α+ 450 cos 4α+ 81 cos 6α) cos(δ − φ1 + 2φ2)

− 2 sin θ tan θ cos(δ + φ1)(23 cosα+ 9 cos 3α)2,

B = (7 + 9 cos 2α)(
√

2 cscα
√
−7− 9 cos 2α(33 + 28 cos 2α+ 3 cos 4α)

− 2(19 + 36 cos 2α+ 9 cos 4α) sin(δ − φ1 + 2φ2)

+ 8 cos2 α sin θ tan θ sin(δ + φ1)(7 + 9 cos 2α)).

The compatibility condition e1(e2(δ))− e2(e1(δ))− [e1, e2](δ) = 0 then gives

(39) sin(δ − φ1 + 2φ2) =
(25 + 36 cos 2α+ 3 cos 4α) csc3 α

4
√

2
√
−7− 9 cos 2α

.

Lemma 6.1. The numbers θ and φ := φ2 are constants. Moreover a, b, c1, c2 are all zero and
d1 = cosφ, d2 = sinφ.

Proof. The expression on the right hand side of (39) is smaller than or equal to −1 for every
α ∈ [arccos( 1

3 ), arccos(− 1
3 )] and equality holds if α = π/2. Therefore α = π/2 and thus a, b, c1

and c2 vanish and d1 = cosφ2 and d2 = sinφ2. The equations for ei(θ) and ei(φ2) imply that θ
and φ2 are constant. �

The second fundamental form thus is given by

h(e1, e1) = cosφ e5 + sinφ e6, h(e1, e2) = − sinφ e5 + cosφ e6,

where φ is a constant.
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6.2. Both components are homogeneous tori. In order to obtain a parametrization f for
flat almost complex surfaces in S3 × S3, we will rewrite the structure equations for the almost
complex immersion f as equations for the immersions p, q in S3 where f = (p, q). The calculations
are not that difficult, but the expressions get rather lengthy.

Consider S3 × S3 in R8 = R4 ⊕ R4. Since [e1, e2] = 0, there are coordinates (u, v) such
that ∂u = e1 and ∂v = e2. Write f = (p, q), Qf = (−p, q) and consider the frame

G =
{
f,Qf, fu, fv, Pfu, Pfv, G(fu, Pfu), JG(fu, Pfu)

}
;

this is just the frame e1, . . . , e6 with f and Qf added to it. Let D denote the Euclidean connection
on R8 and A and B the matrices such that

D∂uG = AG and D∂vG = BG.
Now we explain how to calculate all the Euclidean covariant derivatives. We have D∂uf = fu.

By DQ = 0 and (14)

D∂uQf = Qfu = − 1√
3
fv +

2√
3
Pfv.

By Lemma 2.2, equations (16), (17) and the expression ∇̃e1e1 we have

D∂ufu = ∇E∂ufu + 1
2 〈D∂ufu, f〉f + 1

2 〈D∂ufu, Qf〉Qf

= ∇̃∂ufu + JG(fu, Pfu)− 1
2 (〈fu, fu〉f + 〈fu, Qfu〉Qf)

= cosφG(fu, Pfu) + (sinφ+ 1)JG(fu, Pfu)− ( 1
2 + 1

4 cos θ)f.

Note that f and Qf have Euclidean length 2, hence the factor 1
2 in the last two terms. The

derivatives of fv, Pfu and Pfv are calculated in the same way. To obtain D∂uG(fu, Pfu)
and D∂uJG(fu, Pfu), we use (13). For instance,

D∂uG(fu, Pfu) = ∇E∂uG(fu, Pfu) + 1
2 〈D∂uG(fu, Pfu), f〉f + 1

2 〈D∂uG(fu, Pfu), Qf〉Qf

= ∇̃∂uG(fu, Pfu) + 1
2

(
JG(fu, PG(fu, Pfu)) + JG(G(fu, Pfu), Pfu)

− 〈G(fu, Pfu), fu〉f − 〈G(fu, Pfu), Qfu〉Qf
)

= 1
3 cosφ(cos θ − 1)fu + 1

6 (2(1 + sinφ) cos θ + 2 sinφ− 1)fv

+ 1
3 cosφ(cos θ − 1)Pfu + 1

6 (2 sinφ(cos θ + 1)− cos θ+2)Pfv.

Proceeding in this way, one obtains the matrices A and B. The matrix A is

0 0 1 0 0 0 0 0
0 0 0 − 1√

3
0 2√

3
0 0

−( 1
2 + cos θ

4 ) 0 0 0 0 0 cosφ 1+ sinφ

0
√

3
4 cos θ 0 0 0 0 − sinφ cosφ

−( 1
4 + cos θ

2 ) 0 0 0 0 0 cosφ 1
2 − sinφ

0 −
√

3
4 0 0 0 0 −( 1

2 + sinφ) − cosφ
0 0 1

3 cosφ(cos θ − 1) 1
6 (2 cos θ(sinφ+ 1) + 2 sinφ− 1) 1

3 cosφ(cos θ − 1) 1
6 (2 sinφ(cos θ + 1)− cos θ + 2) 0 0

0 0 − 1
6 (2 sinφ(cos θ + 1) + 1) 1

3 cosφ(cos θ − 1) 1
6 (2 sinφ(cos θ + 1)+ cos θ) 1

3 cosφ(1− cos θ) 0 0


and B equals

0 0 0 1 0 0 0 0
0 0 1√

3
0 − 2√

3
0 0 0

0
√

3
4 cos θ 0 0 0 0 − sinφ cosφ

cos θ
4 − 1

2 0 0 0 0 0 − cosφ 1− sinφ

0
√

3
4 0 0 0 0 1

2 − sinφ − cosφ
cos θ

2 − 1
4 0 0 0 0 0 − cosφ 1

2 + sinφ
0 0 1

6 (2 sinφ(1− cos θ) + 2 cos θ + 1) 1
3 cosφ(cos θ + 1) 1

6 (2 sinφ(1− cos θ)− cos θ − 2) 1
3 cosφ(1 + cos θ) 0 0

0 0 − 1
3 cosφ(cos θ + 1) 1

6 (2 sinφ(1− cos θ)− 1) 1
3 cosφ(cos θ + 1) 1

6 (2 sinφ(cos θ − 1)− cos θ) 0 0


Note that f(u, v) = exp(Au+Bv) = exp(Au) exp(Bv) gives the parametrization of flat almost

complex surfaces in S3×S3 as a solution of the system of differential equations of first order. At
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this point we have equations for the immersion f : M → (S3 × S3, 〈·, ·〉), that is, f is regarded
as an immersion in S3 × S3 with the usual product metric.

In order to find the equations for the components p and q, we rewrite these first order equations
as a system of second order equations. Note that p = 1

2 (f−Qf) and q = 1
2 (f+Qf) and consider

the vectors

ξ1 =
1√
3
G(fu, Pfu) + JG(fu, Pfu),

ξ2 = − 1√
3
G(fu, Pfu) + JG(fu, Pfu).

The derivatives of p and q can readily be found using the calculations above. If we write

G1 = (p, pu, pv, ξ1), G2 = (q, qu, qv, ξ2),

then we obtain the following system of equations

D∂uG1 = A1G1, D∂vG1 = B1G1,(40)

D∂uG2 = A2G2, D∂vG2 = B2G2,(41)

where the matrices A1, B1, A2 and B2 are

A1 =


0 1 0 0

− 1
4 (2 + cos θ) 0 0 1

2 (1 +
√

3 cosφ+ sinφ)

−
√

3
4 cos θ 0 0 1

2 (cosφ−
√

3 sinφ)

0 1
6 (cos θ(1 + 2

√
3 cosφ 1

6
√

3
(3 cos θ + 2

√
3 cosφ(cos θ − 1) 0

−2 sinφ)− 2(1 +
√

3 cosφ+ sinφ)) +6 sinφ(1 + cos θ))

 ,

B1 =


0 0 1 0

−
√

3
4 cos θ 0 0 1

2 (cosφ−
√

3 sinφ)

− 1
4 (2− cos θ) 0 0 1

2 (1−
√

3 cosφ− sinφ)
0 − 1

3 cosφ(1 + cos θ) 1√
3

cosφ(1 + cos θ) 0

+ 1
2
√

3
(cos θ − 2 sinφ(cos θ − 1)) − 1

6 (2 + cos θ + 2 sinφ(cos θ − 1))

 ,

A2 =


0 1 0 0

− 1
4 (2 + cos θ) 0 0 1

2 (sinφ−
√

3 cosφ+ 1)√
3

4 cos θ 0 0 1
2 (cosφ+

√
3 sinφ)

0 1√
3

cosφ(1− cos θ) 1
3 cosφ(cos θ − 1) 0

− 1
6 (2 sinφ(1 + cos θ)− cos θ + 2) − 1

2
√

3
(2 sinφ(1 + cos θ) + cos θ)

 ,

B2 =


0 0 1 0√

3
4 cos θ 0 0 1

2 (cosφ+
√

3 sinφ)
1
4 (cos θ − 2) 0 0 1

2 (
√

3 cosφ− sinφ+ 1)
0 1

2
√

3
(cos θ(2 sinφ− 1)− 2 sinφ) 1

6 (2 sinφ(1− cos θ)− cos θ − 2) 0

− 1
3 cosφ(1 + cos θ) − 1√

3
cosφ(1 + cos θ)

 .
In particular p and q are parametrizations of surfaces in S3. An elementary calculation shows

that these surfaces have zero Gaussian curvature and constant mean curvatures

(42) csc θ√
3

(
2 cos θ sin

(
π
3 − φ

)
− 1
)
, − csc θ√

3

(
2 cos θ sin

(
π
3 + φ

)
+ 1
)

respectively. It is well-known that the only surfaces with constant Gaussian and mean curvature
in S3 are locally totally geodesic spheres or homogenous tori, hence

Proposition 6.2. The immersions p and q are congruent to (parts of) the homogeneous tori.

Recall that for −1 < a < 1, if

xa(u, v) = (

√
1 + a

2
eiu,

√
1− a

2
eiv),
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is the homogeneous torus with normal given by

ξ(u, v) = (

√
1− a

2
eiu,−

√
1 + a

2
eiv).

Then we have that

ξu =
√

1−a
1+axu,

ξv = −
√

1+a
1−axv,

from which we deduce that the mean curvature Ha = − 1
2 (
√

1−a
1+a −

√
1+a
1−a ) = a√

1−a2
.

The immersions p and q are SO(4)-congruent to a standard flat torus in S3. Also S3 ×
S3 = SU(2) × SU(2) is the double cover of SO(4), so any rotation R ∈ SO(4) can be written
as R(x) = αxβ, where α, β ∈ S3. Therefore we can write

p(u, v) = a1(r1 cosu, r1 sinu, r2 cos v, r2 sin v) a2,

q(ũ, ṽ) = a3(s1 cos ũ, s1 sin ũ, s2 cos ṽ, s2 sin ṽ) a4,

where r1, r2, s1, s2 are positive real numbers with r2
1 + r2

2 = 1, s2
1 + s2

2 = 1 and a1, a2, a3, a4 ∈ S3

are unit quaternions. Recall that the isometries of the nearly Kähler S3 × S3 are (p, q) 7→
(apc−1, bqc−1) for unit quaternions a, b and c. So by applying an appropriate isometry, p and q
become

p(u, v) = (r1 cosu′′(u, v), r1 sinu′′(u, v), r2 cos v′′(u, v), r2 sin v′′(u, v)),

q(u, v) = (s1 cosu′(u, v), s1 sinu′(u, v), s2 cos v′(u, v), s2 sin v′(u, v)) d,
(43)

for some d ∈ S3. We already know that for both maps p and q are congruent to homogenous
tori and that moreover their Christoffel symbols with respect to the usual metric on S3 vanish.
Therefore the coordinates u′, v′ and u′′, v′′ are related by an affine transformation to the standard
coordinates of the homogeneous torus. We thus have

u′ = b1u+ b2v, v′ = b3u+ b4v,

u′′ = c1u+ c2v, v′′ = c3u+ c4v.

Without loss of generality, by applying a rotation and a homothety we may moreover assume
that c1 = 1, c2 = 0.

6.3. Proof of Theorem 1.3. We first assume that neither P (TM) ⊂ TM nor P (TM) ⊥ TM .
The first step of the proof will be to apply the existence and uniqueness theorem given in Theorem
1.1. In this case the holomorphic differential does not vanish identically. We have seen that in
this case 0 < θ < π

2 and that the connection coefficients of the basis e1 and e2 vanish. As such
we can introduce a complex coordinate z = x+ iy, by

∂

∂z
= ∂z = 1

2w(e1 − ie2),

where at the moment w is an arbitrary positive constant. As

g(∂z, P∂z) = 1/4w2g(e1 − iJe1, P e1 − iPJe1) = 1
2w

2 cos θ,

we see that taking w =
√

2√
cos θ

yields our preferred complex coordinate.

It then follows that

eω = g(∂z, ∂z̄) = 1/2w2 = 1
cos θ ,
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which implies that ω is a positive constant. Moreover, we have that

h(∂z, ∂z) = 1
4w

2h(e1 − iJe1, e1 − iJe1)

= 1
cos θ (h(e1, e1)− ih(e1, e2))

= 1
cos θ (cosφe5 + sinφe6 − i sinφe5 + i cosφe6)

= 1
cos θ e

iφ(e5 − ie6),

and

G(∂z̄, P∂z) = 1
4w

2G(e1 + iJe1, P e1 − iPJe1)

= 1
2 cos θG(e1 + iJe1, P e1 + iJPe1)

= 1
cos θ (G(e1, P e1) + iG(Je1, P e1))

= 1
cos θ (G(e1, P e1)− iG(e1, PJe1))

= 1
cos θ (e5 − ie6),

which implies that eiφ = µ. Note that these are indeed trivial solutions of the system of differen-
tial equations in Theorem 1.1 and that therefore for every value of 0 < θ < π

2 and 0 ≤ φ < 2π we
get a unique solution. Therefore, in order to complete the proof in this case, by the uniqueness
part of the theorem it is sufficient for value of 0 < θ < π

2 and 0 ≤ φ < 2π to give an example of
a flat almost complex surface.

In order to do so we will look at the mean curvatures of the immersions p and q. We define
the map

g1 :]0, π2 [×]0, 2π[→ R2 : (θ, φ) 7→
(

csc θ√
3

(
2 cos θ sin

(
π
3 − φ

)
− 1
)
,− csc θ√

3

(
2 cos θ sin

(
π
3 + φ

)
+ 1
))
.

Note that the image of the φ-lines under g1 is the ellipse with equation

3
4 (x+ y)2 + 1

4 (x− y)2 +
√

3 csc θ (x+ y) + 1 = 0.

This implies first that the map is injective and that its image is given by

g1(]0, π2 [×]0, 2π[) = {(x, y) ∈ R2|x+ y < 0}\{(− 1√
3
,− 1√

3
)}.

On the other hand as we have seen before, the homogeneous torus

Ca = {(z1, z2) ∈ C2 : |z1| =
√

1 + a

2
, |z2| =

√
1− a

2
},

where a ∈] − 1, 1[ has mean curvature a√
1−a2

. Note that the function a 7→ a√
1−a2

is an odd

function which is a bijection between ]− 1, 1[ and R. Moreover we have that a√
1−a2

= − b√
1−b2 if

and only a + b = 0. Also a√
1−a2

= − 1√
3

if and only if a = − 1
2 . Therefore, in order to complete

the proof of the theorem in this case, it is sufficient to give homogeneous tori p and q, with
parameters a and b satisfying a + b < 0 and (a, b) 6= (− 1

2 ,−
1
2 ). A straightforward computation

now implies that

p(u, v) = (

√
1 + a

2
ei(c1u+c2v),

√
1− a

2
ei(c3u+c4v)),

and

q(u, v) = (

√
1 + b

2
ei(b1u+b2v),

√
1− a

2
ei(b3u+b4v)) ∗ i,
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where ∗ denotes the quaternion multiplication and c1, c2, c3, c4, b1, b2, b3, b4 are constants given
by

c1 = 1,(44)

c2 = 0,(45)

c3 =
a
(
2
√

1− a2
√

1− b2b− 2ab2 + a
)
+ 2b2 − 1

a2
(
2b2 − 1

)
− a

(
2
√

1− a2
√

1− b2b + b2 − 1
)
+
√

1− a2b
√

1− b2 − 1
,(46)

c4 = −

√
3
(√

1− a2
√

1− b2b− ab2 + a
)

a2
(
2b2 − 1

)
− a

(
2
√

1− a2
√

1− b2b + b2 − 1
)
+
√

1− a2b
√

1− b2 − 1
,(47)

b1 = −

√
1− a2

(√
3c1 + 3c2 +

√
3c3 + 3c4

)
+ 2

√
3− 3b2(c3 − c1)

4
√

3− 3b2
,(48)

b2 =

√
3
(
a2b

√
1− b2 + a

(
b2 − 1

) (√
1− a2 +

√
1− b2

)
+ b

(√
1− a2(b− 1)b−

√
1− a2 −

√
1− b2

)
+
√

1− a2
)

2
√

1− b2
(
a2
(
1− 2b2

)
+ a

(
2
√

1− a2
√

1− b2b + b2 − 1
)
−
√

1− a2b
√

1− b2 + 1
) ,(49)

b3 = −

√
1− a2

(√
3c1 + 3c2 +

√
3c3 + 3c4

)
+ 2

√
3− 3b2(c3 − c1)

4
√

3− 3b2
− c1 + c3,(50)

b4 =

√
3
(
a2b

√
1− b2 + a

(
b2 − 1

) (√
1− a2 −

√
1− b2

)
− b

(√
1− a2b(b + 1)−

√
1− a2 +

√
1− b2

)
+
√

1− a2
)

2
√

1− b2
(
a2
(
1− 2b2

)
+ a

(
2
√

1− a2
√

1− b2b + b2 − 1
)
−
√

1− a2b
√

1− b2 + 1
) .(51)

As

−3

4

(√
1− a2b+ (a− 1)

√
1− b2

)2

− 1

4

(√
1− a2b+ (a+ 1)

√
1− b2

)2

= a2
(
2b2 − 1

)
− a

(
2
√

1− a2
√

1− b2b+ b2 − 1
)

+
√

1− a2b
√

1− b2 − 1

the above constants are actually well defined for any (a, b) ∈] − 1, 1[×] − 1, 1[. This completes
the proof in the general case.

If P (TM) ⊂ TM , we know that M is congruent to the totally geodesic torus, which can be
obtained from the previous formula by taking any allowable (a,−a).

If P (TM) ⊥ TM we know that the corresponding H-system is a flat constant mean curvature
surface (with mean curvature − 2√

3
). Up to congruence in R3 such a surface is unique and

therefore all such surfaces in S3 × S3 must be mutually congruent. So again it is sufficient to
give an example of such a surface which is obtained by taking (a, b) = (− 1

2 ,−
1
2 ) in the previous

formulas.
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