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Abstract In this article we define a new class of Pythagorean-Hodograph curves built-upon a six-
dimensional mixed algebraic-trigonometric space, we show their fundamental properties and compare
them with their well-known quintic polynomial counterpart. A complex representation for these curves
is introduced and constructive approaches are provided to solve different application problems, such
as interpolating C1 Hermite data and constructing spirals as G2 transition elements between a line
segment and a circle, as well as between a pair of external circles.
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1 Introduction and motivations

The purpose of this article is to investigate the existence of planar, trigonometric Pythagorean Hodo-
graph curves defined over a mixed algebraic–trigonometric space possessing a normalized B–basis.
These curves are shown to be the analogue of the polynomial Pythagorean–Hodograph (PH) quintics
in the considered non-polynomial space - due to the fact that they enjoy an analogous property on
the hodograph - and are thus called Algebraic-Trigonometric Pythagorean-Hodograph (ATPH) curves.
Their planar polynomial counterpart was originally introduced by Farouki and Sakkalis in [3]. These
curves, commonly called PH curves since the Euclidean norm of their hodograph is also a polynomial,
have the useful properties of admitting a closed–form polynomial representation of their arc–length as
well as exact rational parameterizations of their offset curves. Since their introduction they have widely
been investigated mainly for solving practical problems from applications that particularly benefit from
the PH curves’ particular properties. Rational and spatial counterparts of polynomial PH curves have
as well been proposed, but we are not aware of any attempts of defining Pythagorean Hodograph curves
over a mixed algebraic–trigonometric space. This observation motivated us to expand the boundary
of the PH curve theory into the realm of non-polynomial curves, in order to show that the benefits of
polynomial PH curves over generic polynomial curves can be extended also to curves defined over more
complicated function spaces. The function spaces we consider are the Algebraic-Trigonometric (AT)
spaces deeply investigated in [2,14–16], since they offer the advantage of providing an exact description
of a wide variety of trigonometric curves, such as, e.g., ellipses, lemniscates, cardioids, and others. In
fact, we believe the extension of the PH property from parametric polynomial curves to parametric
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curves defined over a mixed algebraic-trigonometric space beneficial to augmenting the flexibility of
the important class of PH curves in curve design. This new class of ATPH curves should therefore
be seen as a beneficial addition to the existing polynomial PH curves in the same way as general
AT curves complement general polynomial curves. In fact, this new subclass of AT curves inherits a
closed form representation of their arc–length and a rational algebraic-trigonometric representation of
the curve’s offsets. In this article we show how ATPH curves can be conveniently used to solve differ-
ent Hermite interpolation problems. For this purpose we revisit several important publications, such
as [5, 6, 11, 12], dealing with the solution of analogous problems by polynomial PH curves, in order to
generalize them to our non-polynomial context. In particular, while [5] and [12] solve the C1 Hermite
interpolation problem by polynomial PH quintics and analyze the shape of the obtained solutions, [6]
and [11] consider the problem of joining G2–continuously basic elements such as line segments and
circles by polynomial PH quintics of monotone curvature, also referred to as PH spirals. As also done
in [4–6,12] for polynomial PH curves, to facilitate the solution of the above Hermite problems a com-
plex representation of the novel class of ATPH curves is used, and a general constructive approach
exploiting their key properties is proposed.
The remainder of the article is organized as follows. In Section 2 we recall some known results on nor-
malized B–bases of pure trigonometric and mixed algebraic–trigonometric spaces. Section 3 considers
generalized Bézier curves defined over a six–dimensional algebraic–trigonometric space, shows their
capability of reproducing well–known trigonometric curves and proposes a de Casteljau-like algorithm
for their exact and stable evaluation. Section 4 is dedicated to the definition and construction of ATPH
curves generalizing polynomial PH quintics. These curves have the property that the Euclidean norm
of their hodograph is a trigonometric function, their arc-length is a mixed algebraic–trigonometric
function and their unit tangent, unit normal as well as signed curvature are described by rational
trigonometric functions. In Section 5 the class of ATPH curves is employed to solve the C1 Hermite
interpolation problem. The obtained four solutions are analyzed and the best one is identified. Section
6 deals with the construction of ATPH curves with monotone curvature, also called ATPH spirals, for
joining G2-continuously a line segment and a circle as well as two external circles. In both cases the
obtained solutions turn out to be more flexible than their polynomial PH counterparts, thanks to the
additional shape parameter offered by the ATPH representation. Conclusions are drawn in Section 7.

2 Normalized B-bases for pure trigonometric and mixed algebraic–trigonometric spaces

Let t ∈ [0, α] and 0 < α < π. For an arbitrary m ∈ N we consider the space of order m trigonometric
polynomials

Ũ2m = ⟨1, {sin(ℓt), cos(ℓt)}mℓ=1⟩,

and we denote by
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i
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, i = 0, ...,m, (1)

the normalized B-basis proposed in [17] for such a space. Note that, since 0 < α < π, then for any
choice of α in that range the µi are strictly positive values. Moreover, as pointed out in [17], the basis
functions B̃2m

i , i = 0, ..., 2m possess the following properties:

(i) Symmetry: B̃2m
i (t) = B̃2m

2m−i(α− t), t ∈ [0, α] ;

(ii) Positivity: B̃2m
i (t) ≥ 0, t ∈ [0, α] ;

(iii) Partition of unity:
∑2m

i=0 B̃2m
i (t) = 1, t ∈ [0, α] ;

(iv) Recursion: B̃2m
i = B̃2

0 B̃
2(m−1)
i + B̃2

1 B̃
2(m−1)
i−1 + B̃2

2 B̃
2(m−1)
i−2 , m ≥ 2 .

The functions B̃2m
i (t), i = 0, ..., 2m can be regarded as the true equivalent of the Bernstein polynomials

in Ũ2m, and they tend to the ordinary Bernstein polynomials of degree 2m whenever α → 0. On the
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other hand, note that the parameter α, if progressively increased in its range of definition, offers an
interesting tension-like effect (see Figure 1 (a)-(c)) and, when approaching π, only the first and the
last functions of the normalized B-basis B̃2m

i , i = 0, ..., 2m are non-vanishing. Therefore the associated
curve x(t) =

∑2m
i=0 piB̃

2m
i (t), t ∈ [0, α] degenerates to the segment p0p2m. For instance, when α → π,

the normalized B-basis B̃2
i , i = 0, 1, 2 for the space Ũ2 = ⟨1, sin(t), cos(t)⟩ assumes the following form

lim
α→π

B̃2
0(t) =

1

2
(1 + cos(t)), lim

α→π
B̃2

1(t) = 0, lim
α→π

B̃2
2(t) =

1

2
(1− cos(t)).

This limit case is illustrated in Figure 1(d).
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Fig. 1 Basis functions B̃2
i (t), i = 0, 1, 2 for t ∈ [0, α] and α = π

6
(a), α = π

3
(b), α = 2

3
π (c), α → π (d).

For later use we give the explicit expressions of the normalized B-bases for the spaces Ũ2, Ũ4 and Ũ6,
hereinafter denoted by {B̃2

i }i=0,1,2, {B̃4
i }i=0,··· ,4, {B̃6

i }i=0,··· ,6, respectively:

B̃2
0(t) =

cos(α−t)−1
cos(α)−1 ,

B̃2
1(t) =

cos(α)−cos(t)−cos(α−t)+1
cos(α)−1 ,

B̃2
2(t) =

cos(t)−1
cos(α)−1 ,

B̃4
0(t) =

(cos(α−t)−1)2

(cos(α)−1)2
,

B̃4
1(t) =
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(cos(α)−1)2

,

B̃4
2(t) =

2(cos(α−t)−1)(cos(t)−1)+(cos(α)−cos(t)−cos(α−t)+1)2

(cos(α)−1)2
,

B̃4
3(t) =

2(cos(t)−1)(cos(α)−cos(t)−cos(α−t)+1)
(cos(α)−1)2

,

B̃4
4(t) =

(cos(t)−1)2

(cos(α)−1)2
,

B̃6
0(t) =

(cos(α−t)−1)3

(cos(α)−1)3
,

B̃6
1(t) =

−48 cos(α/2) sin(t/2) sin(α/2−t/2)5

(cos(α)−1)3
,

B̃6
2(t) =

3 (2 cos(α)+3)(cos(t)−1)(cos(α−t)−1)2

(cos(α)−1)3
,

B̃6
3(t) =

−32 sin(t/2)3 sin(α/2−t/2)3 cos(α/2)(cos(α)+4)
(cos(α)−1)3

,

B̃6
4(t) =

3 (2 cos(α)+3)(cos(t)−1)2(cos(α−t)−1)
(cos(α)−1)3

,

B̃6
5(t) =

−48 cos(α/2) sin(t/2)5 sin(α/2−t/2)
(cos(α)−1)3

,

B̃6
6(t) =

(cos(t)−1)3

(cos(α)−1)3
.

(2)

Moreover, we also recall the de Casteljau-like algorithm presented in [15] for evaluating trigonometric
Bézier curves over the space Ũ2. Given a trigonometric Bézier curve x(t) =

∑2
i=0 p0

i B̃
2
i (t), its evaluation

at an arbitrary parameter value t ∈ [0, α], 0 < α < π, is obtained by the following corner cutting
algorithm

p1
0 = (1− λ0

0(t))p
0
0 + λ0

0(t)p
0
1,

p1
1 = (1− λ0

1(t))p
0
1 + λ0

1(t)p
0
2,

p2
0 = (1− λ1

0(t))p
1
0 + λ1

0(t)p
1
1,

(3)
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where
λ0
0(t) =

sin(α) (cos(t)−1)
sin(t) (cos(α)−1) ,

λ0
1(t) =

cos(t)−cos(α)+cos(α−t)−1
sin(α−t) sin(α) , such that x(t) = p2

0.

λ1
0(t) =

sin(α−t)(cos(t)−1)
sin(α)−sin(t)−sin(α−t) ,

In Figure 2 we illustrate an application example of the de Casteljau-like algorithm to subdivide the
trigonometric Bézier curve x(t) with α = π

2 at a given parameter t ∈ [0, α].

 p
0
0

 p
1
0

 p
2
0

 p
0
1

 p
1
1

 p
0
2

Fig. 2 Subdivision of a trigonometric Bézier curve in Ũ2 with α = π
2

at the parameter t = π
5
∈ [0, α].

So far, we have focussed our attention on normalized B-bases of pure trigonometric spaces. We con-
clude this section by recalling some results from the articles [14] and [16] about normalized B-bases
of algebraic-trigonometric spaces. In particular, in [14] a normalized B-basis of the mixed linear-
trigonometric functional space

U5 = ⟨1, t, sin(t), cos(t), sin(2t), cos(2t)⟩,

hereinafter denoted by {B5
i (t)}i=0,...,5, is presented for t ∈ [0, α] and 0 < α < 2π. Introducing the

notation
s1 = sin(α2 ), c1 = cos(α2 ), s2 = sin(α), c2 = cos(α), (4)

and the abbreviations

n0 = 6α+ 2s2(c2 − 4), n1 = c1(s2 − 3α) + 4s1, n2 = (2 + c2)α− 3s2, (5)

the normalized B-basis of U5 can be written using the explicit expressions

B5
0(t) =

2
n0

(
3(α− t) + sin(α− t) (cos(α− t)− 4)

)
,

B5
1(t) =

4s1
n0n1

(
n0 sin

4
(
α−t
2

)
− 2s41

(
3(α− t) + sin(α− t) (cos(α− t)− 4)

))
,
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2(t) =
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(
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(
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2

)
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(
t
2

)
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(
α−t
2

)
+

2s41
n1

(
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,
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3(t) =
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(
8 sin3

(
t
2

)
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(
α−t
2
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− n0

n1
sin4

(
t
2

)
+
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n1

(
3t+ sin(t) (cos(t)− 4)
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,

B5
4(t) =

4s1
n0n1

(
n0 sin

4
(
t
2

)
− 2s41

(
3t+ sin(t) (cos(t)− 4)

))
,

B5
5(t) =

2
n0

(
3t+ sin(t) (cos(t)− 4)

)
.

(6)

As in the previous case, the parameter α plays a tension-like effect which is illustrated in Figure
3(a)-(c). Moreover, when α tends to 2π the normalized B-basis in (6) assumes the following form

lim
α→2π

B5
0(t) =

1

12π
(12π − 6t+ 8 sin(t)− sin(2t)),

lim
α→2π

B5
1(t) = lim

α→2π
B5

2(t) = lim
α→2π

B5
3(t) = lim

α→2π
B5

4(t) = 0,

lim
α→2π

B5
5(t) =

1

12π
(6t− 8 sin(t) + sin(2t)).



Algebraic-Trigonometric Pythagorean-Hodograph curves 5

This limit case is illustrated in Figure 3(d).
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Fig. 3 Basis functions B5
i (t), i = 0, ..., 5 for t ∈ [0, α] and α = π (a), α = 5

4
π (b), α = 3

2
π (c), α → 2π (d).

In [14] it was also proven that the normalized B-basis {B5
i (t)}i=0,...,5 of the space U5 tends to the

ordinary Bernstein polynomials of degree 5 as α approaches 0. In addition, if the free parameter
α is restricted to the interval (0, 2

3π), then the space U5 is an extended Chebyshev space and the
normalized B-basis {B5

i (t)}i=0,...,5 for such a space can be obtained using an iterative integral procedure
starting from the (not normalized) B-basis {B3

i (t)}i=0,...,3 for the extended Chebyshev space U3 :=
⟨sin(t), cos(t), sin(2t), cos(2t)⟩ where t ∈ [0, α] and 0 < α < 2

3π (see [16]).

3 AT-Bézier curves over the mixed algebraic-trigonometric space U5

In the following we refer to the parametric curves defined over the mixed algebraic-trigonometric space
U5 as Algebraic-Trigonometric Bézier curves or AT-Bézier curves. From the results in [14] it is well known
that, since the space U5 has a normalized B-basis, then we can define parametric curves over U5 through
a control polygon in a similar way to our familiar polynomial Bézier case. More precisely, an AT-Bézier
curve defined over the space U5 can be described by the Bézier-like form

x(t) =
5∑

i=0

pi B
5
i (t) , t ∈ [0, α], 0 < α < 2π, (7)
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0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x

y

α=2π

α=π/2

Fig. 4 Comparison of an ordinary degree 5 Bézier curve (thicker/green line) and AT–Bézier curves (thin/red lines)
for α = π

2
, π, 3

2
π, 2π obtained from the same control polygon (blue).

where B5
i , i = 0, · · · , 5 are the basis functions given in (6). These curves possess all the good prop-

erties of polynomial Bézier curves such as containment in the convex hull, affine invariance, variation
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diminishing, interpolation of end points and tangency to the control polygon at the end points [1].
Furthermore they depend on the parameter α which can be used as shape parameter. Figure 4 shows
the ordinary degree 5 Bézier curve compared to AT–Bézier curves obtained for different values of α,
starting from the same control polygon. As mentioned in the previous section, for α → 0 the quintic
polynomial Bézier curve is recovered, and for α → 2π the straight line segment through p0 and p5

is obtained. Another interesting feature of AT–Bézier curves is their capability of reproducing arcs of
arbitrary length (depending on the choice of α ∈ (0, 2π)) of planar trigonometric curves in U5, such as
the ones displayed in Figure 5.

Fig. 5 Reproduction of arcs of different trigonometric curves by means of AT–Bézier curves over U5 with α = 3
4
π.

From left to right, circle, cardioid, deltoid (top), limacon, lemniscate, piriform (bottom).

To the best of our knowledge a de Casteljau-like algorithm providing a stable and exact evaluation of
AT-Bézier curves defined over the mixed algebraic-trigonometric space U5 has never been proposed in
the literature. In this section, we derive this kind of corner cutting algorithm, supported by the results
in [13]. To this end, we start by observing that the basis functions {B5

i }i=0,...,5 of the space U5 verify
the following recurrence relation in terms of the basis functions {B̃4

i }i=0,...,4 of the space Ũ4:

B5
i (t) = λ4

i−1(t) B̃
4
i−1(t) + (1− λ4

i (t)) B̃
4
i (t), i = 0, ..., 5 (8)

where
λ4
−1(t) = λ4

5(t) ≡ 0,

λ4
0(t) =

n0 sin4(α−t
2

)−2s41

(
3(α−t)+sin(α−t)(cos(α−t)−4)

)
n0 sin4(α−t

2
)

,

λ4
1(t) =

2s41

(
3(α−t)+sin(α−t)(cos(α−t)−4)

)
−n0 sin4(α−t

2
)+8n1 sin3(α−t

2
) sin( t

2
)

8n1 sin3(α−t
2

) sin( t
2
)

,

λ4
2(t) =

2s41

(
3t+sin(t)(cos(t)−4)

)
−n0 sin4( t

2
)+8n1 sin3( t

2
) sin(α−t

2
)

12n2 sin2( t
2
) sin2(α−t

2
)

,

λ4
3(t) =

n0 sin4( t
2
)−2s41

(
3t+sin(t)(cos(t)−4)

)
8n1 sin3( t

2
) sin(α−t

2
)

,

λ4
4(t) =

2s41

(
3t+sin(t)(cos(t)−4)

)
n0 sin4( t

2
)

,

(9)

with s1 in (4) and n0, n1, n2 the abbreviations in (5).

For all α in (0, 2π) the functions λ4
i (t), i = 0, ..., 4 defined in (9) satisfy the following properties:

(a) λ4
i : [0, α] → [0, 1];

(b) λ4
i (0) = 0 and λ4

i (α) = 1;
(c) λ4

i is monotonically increasing;
(d) λ4

i (t) = 1− λ4
4−i(α− t).
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Fig. 6 Illustration of the functions λ4
i (t), i = 0, ..., 4 (appearing from top to bottom) for t ∈ [0, α] and α = 2

3
π (a),

α = π (b), α = 4
3
π (c).

Figure 6 shows different sets of functions {λ4
i (t)}i=0,...,4 corresponding to different choices of α.

Thus, in view of (8), we can write

x(t) =
5∑

i=0

p0
i B

5
i (t) =

4∑
i=0

p1
i B̃

4
i (t)

with

p1
i = (1− λ4

i (t))p
0
i + λ4

i (t)p
0
i+1, i = 0, ..., 4. (10)

Then, we proceed by defining the vector µ0 := [1, cos(α2 ),
1
3 (1+2 cos2(α2 )), cos(

α
2 ), 1] whose i-th entry

is given by equation (1) with m = 4. Exploiting the results in [13] where a de Casteljau-like algorithm
(also called B-algorithm) for trigonometric curves defined over the space Ũ4 is proposed, we complete
the last 4 steps of the corner cutting algorithm for evaluating AT-Bézier curves in U5 as follows:

for i = 0 : 3
for j = 0 : 3− i

µi+1
j = sin(α−t

2 )µi
j + sin( t2 )µ

i
j+1;

pi+2
j = sin(α−t

2 )
µi

j

µi+1
j

pi+1
j + sin( t2 )

µi
j+1

µi+1
j

pi+1
j+1;

end
end

(11)

There follows that x(t) = p5
0 for any arbitrary t ∈ [0, α]. In Figure 7 we illustrate the 5 steps of the de

Casteljau-like algorithm given by (10)-(11) for the evaluation of AT-Bézier curves in U5.
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Fig. 7 The corner cutting scheme corresponding to the de Casteljau-like algorithm for the evaluation of an AT-Bézier
curve defined over U5 with α = 2

3
π, at the parameter t = π

4
∈ [0, α].
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4 Algebraic-Trigonometric Pythagorean Hodograph (ATPH) curves and their properties

Exploiting the fact that if f ∈ Ũ2 then f2 ∈ Ũ4 and
∫

f2 ∈ U5, we now extend the well–known definition
of polynomial Pythagorean–Hodograph (PH) curves [3] to the algebraic-trigonometric case, replacing
the space of quadratic polynomials ⟨1, t, t2⟩ by the space Ũ2 = ⟨1, sin(t), cos(t)⟩. Since f ∈ Ũ2 is defined
for α ∈ (0, π), the construction of the new class of Pythagorean-Hodograph curves is restricted to
t ∈ [0, α] with α ∈ (0, π).

Definition 1 Let u(t), v(t) and ζ(t) be non-zero real functions in the space Ũ2 such that u(t) and v(t)
are relatively prime (namely gcd(u(t), v(t)) = 1)1 and both non–constant. Then, a planar parametric
curve x(t) = (x(t), y(t)) whose first derivative is of the form

x′(t) = ζ(t)
(
u2(t)− v2(t)

)
and y′(t) = 2ζ(t)u(t)v(t) (12)

is called Algebraic–Trigonometric PH curve or ATPH curve.

As in the case of polynomial PH curves [3, 5], the curve’s parametric speed is given by

σ(t) :=
√
(x′(t))2 + (y′(t))2 = ζ(t) (u2(t) + v2(t)) (13)

and its unit tangent, unit normal and (signed) curvature are given respectively by

t =
(u2 − v2, 2uv)

u2 + v2
, n =

(2uv, v2 − u2)

u2 + v2
, κ =

2(uv′ − u′v)

ζ(u2 + v2)2
, (14)

where, for conciseness, in (14) the parameter t is omitted.
In the following we will restrict our attention to the regular case ζ(t) = 1. In this case the representation
(12) may be obtained by squaring the complex function w(t) = u(t) + iv(t) yielding w2(t) = u2(t) −
v2(t) + i2u(t)v(t). The hodograph (12) is thus given by the real and imaginary part of w2(t). In the
remainder of the paper we will exclusively use this complex notation, and we thus write

x′(t) = x′(t) + iy′(t) = u2(t)− v2(t) + i2u(t)v(t) = w2(t) , (15)

as also previously done for planar PH quintics [3,5]. Since here w(t) is a complex function in the space
Ũ2 we write

w(t) = w0B̃
2
0(t) +w1B̃

2
1(t) +w2B̃

2
2(t) , (16)

where wj ∈ C for j = 0, 1, 2. By integrating (15) we obtain a parametric curve in the mixed algebraic-
trigonometric space U5 which can be expressed in the normalized B-basis (6), as formulated in the
following proposition which results a generalization of [5, Proposition 1].

Proposition 1 A planar, parametric curve over the mixed algebraic–trigonometric space U5 expressed in

terms of the normalized B-basis (6) as

x(t) =
5∑

i=0

piB
5
i (t), t ∈ [0, α], (17)

is a (non-cuspidal) Algebraic–Trigonometric PH curve in the sense of Definition 1 if and only if its control

points can be expressed in the form

p1 = p0 +
n0

16s41
w2

0, (18)

p2 = p1 +
n0 − 6n2

8s41
w0w1, (19)

p3 = p2 +
n2

4s41

(
(1 + c2)w

2
1 +w0w2

)
, (20)

p4 = p3 +
n0 − 6n2

8s41
w1w2, (21)

p5 = p4 +
n0

16s41
w2

2, (22)

where w0,w1,w2 are complex values and s1, c2, n0, n2 denote the abbreviations in (4)-(5).

1 The greatest common divisor (gcd) here is the gcd of the bivariate polynomials (see e.g. [18]) u(t) := u(ξ1, ξ2),
v(t) := v(ξ1, ξ2) where ξ1 = sin(t), ξ2 = cos(t).
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Proof We substitute the function (16) into (15) and by integrating we obtain

x(t) =

∫
x′(t) dt = k+ a0 + a1t+ a2 sin(t) + a3 cos(t) + a4 sin(2t) + a0 cos(2t) (23)

where

a0 = −1

2
u1u2 , a1 =

1

2
(u2

1 + u2
2) + u2

0 , a2 = 2u0u2 , a3 = −2u0u1 , a4 =
1

4
(−u2

1 + u2
2),

with

u0 =
(1 + c2)w1 −w0 −w2

c2 − 1
, u1 =

s2(w0 −w1)

c2 − 1
, u2 =

c2(w0 −w1) +w2 −w1

c2 − 1
(24)

and k the integration constant. Expressing the basis functions of the functional space U5 in terms of the
normalized B–basis (6) and substituting these basis functions in (23) yields the expressions (18)-(22),
where p0 = k− c1

2s31
(w0 −w1) (c2(w0 +w1) +w1 − 2w0 −w2). ⊓⊔

By (13) we have σ(t) :=
√

(x′(t))2 + (y′(t))2 = |w2(t)|, and thus the arc-length of an ATPH curve is
explicitly given by∫

σ(t)dt = 1
2

(
−γ12 + (2γ00 + γ11 + γ22)t+ 4γ02 sin(t)− 4γ01 cos(t) +

1
2 (γ22 − γ11) sin(2t)− γ12 cos(2t)

)
,

(25)
where

γij = Re

(
ui

uj

)
|uj |2, i, j ∈ {0, 1, 2}, (26)

with ui, i = 0, 1, 2 in (24). We continue by showing that, like polynomial PH curves, ATPH curves
admit not only an exact representation of the arc-length, but also of their offset curves. In the following,
the offset curve of the ATPH curve x(t) =

∑5
i=0 piB

5
i (t), t ∈ [0, α] at oriented distance d along the unit

normal vector n(t) is denoted by xd(t) and given by xd(t) = x(t)+ dn(t), t ∈ [0, α]. The normal vector
n has a rational ATPH representation over the space Ũ4 = ⟨1, sin(t), cos(t), sin(2t), cos(2t)⟩ since

n(t) =
−iw2(t)

w(t)w(t)
,

where

w2(t) = w2
0B̃

4
0(t) +w0w1B̃

4
1(t) +

w0w2 + (1 + cos(α))w2
1

2 + cos(α)
B̃4

2(t) +w1w2B̃
4
3(t) +w2

2B̃
4
4(t), (27)

and

w(t)w(t) = w0w0B̃
4
0(t) +

1
2 (w0w1 +w1w0)B̃

4
1(t) +

w0w2+2(1+cos(α))w1w1+w2w0

2(2+cos(α)) B̃4
2(t)

+1
2 (w1w2 +w2w1)B̃

4
3(t) +w2w2B̃

4
4(t) ,

with B̃4
i (t), i = 0, . . . , 4 from (2). We thus obtain

n(t) =

4∑
i=0

υ̃ip̃i B̃
4
i (t)

4∑
j=0

υ̃j B̃
4
j (t)

, t ∈ [0, α],

where
υ̃0 = w0w0 = |w0|2, υ̃0p̃0 = −iw2

0,

υ̃1 = 1
2 (w0w1 +w1w0), υ̃1p̃1 = −iw0w1,

υ̃2 = w0w2+2(1+cos(α))w1w1+w2w0

2(2+cos(α)) , υ̃2p̃2 = −i
w0w2+(1+cos(α))w2

1

2+cos(α) ,

υ̃3 = 1
2 (w1w2 +w2w1), υ̃3p̃3 = −iw1w2,

υ̃4 = w2w2 = |w2|2, υ̃4p̃4 = −iw2
2.
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Now, since x(t) =
∑5

i=0 piB
5
i (t), we can define the offset curve xd(t) as a rational algebraic-trigonometric

curve in terms of the normalized B-basis of the function space obtained from the multiplication of Ũ4

and U5. Recall that being Ũ2 = ⟨1, sin(t), cos(t)⟩, Ũ4 = ⟨1, sin(t), cos(t), sin(2t), cos(2t)⟩ and Ũ8 =
⟨1, sin(t), cos(t), sin(2t), cos(2t), sin(3t), cos(3t), sin(4t), cos(4t)⟩, then the relationships Ũ2 ∗ Ũ2 = Ũ4

and Ũ4 ∗Ũ4 = Ũ8 are satisfied, with ∗ denoting the product between the two function spaces. Therefore,
being U5 = ⟨1, t, sin(t), cos(t), sin(2t), cos(2t)⟩ we have

Û := Ũ4 ∗ U5 = ⟨Ũ8, t, t sin(t), t cos(t), t sin(2t), t cos(2t)⟩.

The offset curve xd(t) of the ATPH curve x(t) is thus a rational algebraic-trigonometric curve of the
form

xd(t) = x(t) + dn(t) =
5∑

i=0

piB
5
i (t) + d

4∑
i=0

υ̃ip̃i B̃
4
i (t)

4∑
j=0

υ̃j B̃
4
j (t)

=

13∑
i=0

υ̂i p̂i B̂
13
i (t)

13∑
j=0

υ̂jB̂
13
j (t)

, t ∈ [0, α],

where B̂13
i , i = 0, ..., 13 are the basis functions of the space Û . This normalized B–basis of Û will be

presented in a forthcoming article. Note that, while the PH quintic has a rational offset of order 10
(see [9]), for the analogous ATPH curve the offset representation requires a basis of order 14.

5 C1 Hermite interpolation problem

In this section we extend the solution to the following problem, as presented for polynomial PH curves
in [5], to the context of ATPH curves.

Problem 1. Given arbitrary control points p0 ̸= p1 and p4 ̸= p5 of an AT-Bézier curve x(t) =∑5
i=0 piB

5
i (t), t ∈ [0, α], defined over the space U5, we look for the two remaining inner control points

p2 and p3 such that all six are expressible in the form given by equations (18)-(22) for some complex
values w0,w1,w2. Since AT-Bézier curves built-upon the normalized B-basis B5

i , i = 0, · · · , 5 satisfy

x(0) = p0, x(α) = p5, x′(0) =
16s41
n0

(p1 − p0), x′(α) =
16s41
n0

(p5 − p4),

with s1 in (4) and n0 in (5), this problem can be obviously regarded as a C1 Hermite interpolation
problem to prescribed end points p0, p5 and tangent vectors at these end points. Hereinafter the
tangent vectors at p0, p5 will be denoted by d0,d2, respectively, since (as we will see later) they are
directly related to the values of w0,w2.

5.1 ATPH interpolants solving the C1 Hermite problem

In order to solve Problem 1 we propose a variation of the method proposed in [5] to solve the Hermite
interpolation problem by polynomial PH quintics.

Proposition 2 The solutions of the Hermite interpolation Problem 1 in terms of the complex values

w0,w1,w2 are given by

w0 = ±|d0|
1
2 exp

(
i
ω0

2

)
= ±|d0|

1
2

(
cos
(
ω0

2

)
+ i sin

(
ω0

2

))
,

w2 = ±|d2|
1
2 exp

(
i
ω2

2

)
= ±|d2|

1
2

(
cos
(
ω2

2

)
+ i sin

(
ω2

2

))
, (28)

w1 = ±|d1|
1
2

(
cos
(
ω1

2

)
+ i sin

(
ω1

2

))
− n0 − 6n2

4n2(1 + c2)
(w0 +w2),

where

d0 =
16s41
n0

(p1 − p0) , d2 =
16s41
n0

(p5 − p4) ,

d1 = 1
1+c2

(
4s41
n2

(p4 − p1) +
(n0−6n2)

2

16n2
2(1+c2)

(w0 +w2)
2 −w0w2

)
,

ωk = arg(dk), k = 0, 1, 2 and s1, c2, n0, n2 are the abbreviations in (4)-(5).
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Proof By de Moivre’s theorem, from (18) and (22) we obtain the expressions of w0 and w2 in (28).
Then, writing p4 − p1 = (p4 − p3) + (p3 − p2) + (p2 − p1) and substituting from (18)-(22) we obtain

8s41
n0 − 6n2

(p4 − p1) = w1w2 +
2n2

n0 − 6n2
((1 + c2)w

2
1 +w0w2) +w0w1. (29)

By the change of variable

w̃1 = w1 +
n0 − 6n2

4n2(1 + c2)
(w0 +w2), (30)

equation (29) becomes

w̃2
1 =

4s41
n2(1 + c2)

(p4 − p1) +
(n0 − 6n2)

2

16n2
2(1 + c2)2

(w0 +w2)
2 − 1

1 + c2
w0w2 . (31)

From (31) we find

w̃1 = ±|d1|
1
2 exp

(
i
ω1

2

)
= ±|d1|

1
2

(
cos
(
ω1

2

)
+ i sin

(
ω1

2

))
(32)

with

d1 =
4s41

n2(1 + c2)
(p4 − p1) +

(n0 − 6n2)
2

16n2
2(1 + c2)2

(w0 +w2)
2 − 1

1 + c2
w0w2.

Finally, by substituting (32) in (30) the expression of w1 in (28) is obtained. ⊓⊔

Remark 1 As in the polynomial case (see [5, Remark 3]), in the expressions (28) we have three inde-
pendent signs. Thus, we can construct eight ATPH interpolants. We remark that if we take (-w0, -w1,
-w2) or (w0, w1, w2) the same interpolant is obtained. Moreover, we observe that in the expressions
(18)-(22) we have homogeneous quadratic forms in the coefficients of w(t). As suggested in [5], we can
thus fix the sign in any one of the three expressions (28) and obtain only four distinct interpolants.

Remark 2 We further observe that the free parameter α acts as a shape parameter for the ATPH
interpolants. This can be clearly seen in Figure 8 where different ATPH interpolants to the same end
points and associated end derivatives (all corresponding to a positive choice of the signs of w0 and w2)
are displayed together with the standard polynomial PH quintic solving the same C1 Hermite problem.
In this figure, as well as in many other figures of this section, we refer to color lines to distinguish among
multiple plots. We thus invite the reader to refer to the electronic version of the paper to make the
identification of individual plots easier. We also note that, in Figure 8, for increasing values of α in
(0, π) the curves become longer and longer. This seems to be in contradiction to the behaviour of the
AT-Bézier curves which, for increasing values of α in their range of definition, become shorter and
shorter. The reason for this fact simply lies in the dependency on α of the control points of the ATPH
curve according to equations (18)-(22).
Figure 9 shows the behaviour of all four possible families of ATPH curves interpolating the end points
p0 = 5i, p5 = −3− 4i and the end derivatives d0 = d2 = 25− 15i, for different choices of α ∈ (0, π). We
obtain the four families of ATPH interpolants from the sign choices ++, +−, −+, −− in the expressions
of w0 and w2. In the following we will always refer to the four families of ATPH interpolants by pointing
out these sign combinations.
We conclude by observing that the arc-length of the ATPH curve (corresponding to the evaluation of
the function in (25) between 0 and α) has the expression

Sα =
∫ α
0

σ(t)dt = 2γ01 + 1
2γ12 + (γ00 + 1

2 (γ11 + γ22))α + 2γ02 sin(α) − 2γ01 cos(α)

+ 1
4 (γ22 − γ11) sin(2α) − 1

2γ12 cos(2α)
(33)

with γij in (26), and thus turns out to be monotonically increasing for increasing values of α, as clearly
shown in Figure 10. Note that Sα is always a continuous function, but depending on the geometry of
the family of curves it might not be differentiable for certain values of α, as can be seen in Figure 10
(bottom left) for the ATPH family appearing in Figure 8(b).
Inspired by the observation of numerous examples all exhibiting the same qualitative behaviour as the
ones in Figures 8-9 and supported by the fact that, for α ∈ (0, 2

3π), the algebraic-trigonometric space
U5 is an extended Chebyshev space (see [16]), hereinafter we will restrict the choice of α to the interval
(0, 2

3π).
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Fig. 8 Comparison of ATPH interpolants (red curves) to the end points p0 = 0, p5 = 1 and associated end derivatives
d0 and d2 (here plotted with a scale factor of 1

5
to fit into the picture), obtained for a positive choice of w0 and

w2 (++) and increasing values of α ∈ (0, π) (respectively α = π
10

, π
4
, π

3
, 2

5
π, 3

5
π, 2

3
π), with the (++) PH quintic

interpolant (blue curve) solving the same C1 Hermite interpolation problem.

5.2 How to identify the “best” ATPH Hermite interpolant

The rotation index R and the absolute rotation index Rabs, respectively defined by

R :=
1

2π

∫ α

0

κ(t)|x′(t)|dt , Rabs :=
1

2π

∫ α

0

|κ(t)||x′(t)|dt ,

are the quantities whose minimization allows us to identify the “best” ATPH Hermite interpolant [5].

Since κ(t) = Im(x̄′(t)x′′(t))
|x′(t)|3 , then κ(t)|x′(t)| = Im(x̄′(t)x′′(t))

|x′(t)|2 and in view of (15) κ(t)|x′(t)| = 2Im
(
w′(t)
w(t)

)
.

The rotation and the absolute rotation indices can thus be rewritten in the equivalent form

R =
1

2πi

∫ α

0

w′(t)w̄(t)−w(t)w̄′(t)

w(t)w̄(t)
dt , Rabs =

1

2π

∫ α

0

|w′(t)w̄(t)−w(t)w̄′(t)|
w(t)w̄(t)

dt. (34)

Recalling that w(t) = u(t) + iv(t), we can also rewrite (34) in the real formulation as follows

R =
1

π

∫ α

0

(u(t)v′(t)− u′(t)v(t))

u(t)2 + v(t)2
dt , Rabs =

1

π

∫ α

0

|(u(t)v′(t)− u′(t)v(t))|
u(t)2 + v(t)2

dt.

Now, if we define z(t) := v(t)
u(t) ∈ R, we can apply [5, Lemma 3] thus obtaining

RATPH = 1
π

(
arctan(z(α))− arctan(z(0))

)
− Iα

0 (z(t)),

RATPH
abs = 1

π

n−1∑
j=0

signIj (ξ(t))
(
arctan(z(tj+1))− arctan(z(tj))

)+ S(u(t)) ,

where

– Iα
0 (z(t)) is the Cauchy index of z(t);

– ξ(t) = u(t)v′(t)− u′(t)v(t);
– tj , j = 0, . . . , n are the zeros of ξ(t) in the interval [0, α] with t0 = 0 and tn = α;
– signIj (ξ(t)) denotes the sign of ξ(t) on the interval Ij = [tj , tj+1], j = 0, . . . , n− 1;
– S(u(t)) is the number of zeros of u(t) in the interval [0, α].

The examples in Figure 11 confirm how the “best” solution to the Hermite interpolation problem
can be identified as the one with the smallest absolute rotation index (see Table 1). The purpose of
Table 2 and Figure 12(a) is to show that ATPH interpolants compare favorably with their polynomial
counterpart represented by the well-known PH quintics. In fact, for the chosen set of end points and
associated end derivatives (taken from [12, Example 4]), we can see that all four possible PH curves
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Fig. 9 The four families of ATPH interpolants to the end points p0 = 5i, p5 = −3 − 4i and end derivatives
d0 = d2 = 25− 15i (here plotted with a scale factor of 1

5
), obtained for different values of α ∈ (0, π).

exhibit undesired self-intersections, although the standard cubic interpolant does not. For the same
data, the (++) ATPH interpolant, e.g. for α = π

5 , not only lacks self-intersections (see Fig. 13(a)-(b)),
but also has a more pleasant curvature behaviour than the standard cubic interpolant (see Fig. 13(c)).
We conclude by observing that, for certain Hermite data, the concept of the “best” interpolant as the
interpolant with the smallest absolute rotation index is ambiguous. An example of this phenomenon is
represented in Figure 12(b) where we have two ATPH curves (the ones having signs (+−) and (−+))
with the same smallest absolute rotation index (see Table 3), none of them being optimal. In fact, the
most similar to the standard cubic interpolant is still the one having signs (++).
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Fig. 10 Behaviour of the arc-length of the ATPH curves in Figure 8 (left) and in Figure 9 (right) for α ∈ (0, π).

RATPH
abs (a) (b)
(++) 0.8976 0.3589
(+−) 1.1515 0.7542
(−+) 1.1515 1.25
(−−) 1.024 1.75

Table 1 ATPH absolute rotation
indices for the examples in Figure 11.

RPH
abs RATPH

abs
(++) 1.395 0.7270
(+−) 1 1
(−+) 1 1
(−−) 1.5504 1.8959

Table 2 Comparison of PH and
ATPH absolute rotation indices
for the examples in Figure 12(a).

RPH
abs RATPH

abs
(++) 1.1009 1.0831
(+−) 1 1
(−+) 1 1
(−−) 1.2266 1.2199

Table 3 Comparison of PH and
ATPH absolute rotation indices
for the examples in Figure 12(b).
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(a) p0 = 0, p5 = 1, d0 = −3 + i, d2 = −3− i

−5 0 5

−5

0

5

++

−5 0 5

−5

0

5

+−

−5 0 5

−5

0

5

−+

−5 0 5

−5

0

5

−−

(b) p0 = −6− i, p5 = 1, d0 = 30 + 25i, d2 = 25− 30i

Fig. 11 Comparison of the ATPH interpolant obtained for α = π
4

(red curve), with the corresponding PH quintic
interpolant (blue curve) and the unique cubic interpolant (green curve) to the given end points p0,p5 and associated
end derivatives d0,d2 (here plotted with a scale factor of 1

5
to fit into the picture).

The criterion based on the absolute rotation index requires us to construct all four interpolants, and
then compare a quantitative shape measure. In order to have the ability to construct directly the
best interpolant only as the one being free of loops, we need to restrict our attention to cases with
“reasonable” Hermite data. Adapting the reasoning in [12] to our non-polynomial context, in the
remainder of this section we show that, given arbitrary end points p0 and p5, we can define “reasonable”
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(b) d0 = d2 = −3 + i, α = π
4

Fig. 12 The four ATPH interpolants (red curves) to the end points p0 = 0, p5 = 1 and associated end derivatives
d0,d2 (plotted with a scale factor of 1

8
in (a) and 1

5
in (b)) obtained with the indicated value of α. The corresponding

PH quintic interpolant and the unique cubic interpolant to the same data are drawn in blue and green, respectively.
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Fig. 13 In (a) and (b) the (++) ATPH interpolant to the end points p0 = 0, p5 = 1 and associated end derivatives
d0 = d2 = 7.5+i (plotted with a scale factor of 1

8
), obtained for α = π

5
, is drawn in red. The corresponding PH quintic

interpolant (a) and the ordinary cubic interpolant (b) to the same data are displayed in blue and green, respectively.
In (c) the curvature behaviour of the ATPH interpolant (red) and the cubic interpolant (green).

Hermite data requiring the associated end derivatives, d0 and d2, to vary in the open half-disk

Dα =

{
d ∈ C : Re(d(p5 − p0)) > 0 and |d| < 3

α
|p5 − p0|

}
with α ∈

(
0,

2

3
π
)
. (35)
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This choice of Dα does not constitute a limitation for the practical applications we have in mind. In
the following we numerically show that the (++) ATPH interpolant always has a well-behaved tangent
variation whenever d0, d2 are chosen in Dα. Such a conjecture allows us to assert that, whenever these
Hermite data are prescribed, the (++) solution can be directly selected as the best ATPH interpolant,
without explicitly constructing all the four solutions and comparing them.

Conjecture 1 If the Hermite end derivatives d0 and d2 lie within the domain Dα, the hodograph x′(t)

of the (++) ATPH interpolant x(t) remains inside Dα for all t ∈ [0, α] and α ∈
(
0, 2

3π
)
.

Proof Without loss of generality, we choose the end points p0 = 0 and p5 = 1. We then recall that, for
a general ATPH interpolant x(t), the hodograph is given by (27), i.e.

x′(t) = w2(t) =
(
w0B̃

2
0(t) +w1B̃

2
1(t) +w2B̃

2
2(t)

)2
.

If we consider the (++) ATPH interpolant from (28), due to the fact that x′(0) = w2(0) = w2
0 = d0

and x′(α) = w2(α) = w2
2 = d2 with d0,d2 ∈ Dα, we have

w0 =
√
d0,

w2 =
√
d2,

w1 = |d1|
1
2 (cos(ω1

2 ) + i sin(ω1
2 ))− n0−6n2

4n2(1+c2)
(w0 +w2) = g(w0,w2),

(36)

where
√
di for i = 0, 2 denotes the principal value of the complex square root, i.e., with positive real

part, and

d1 =
1

1 + c2

(
4s41
n2

(p4 − p1) +
(n0 − 6n2)

2

16n2
2(1 + c2)

(w0 +w2)
2 −w0w2

)
with ω1 = arg(d1).

To show that x′(t) is contained within Dα for all t ∈ [0, α] and α ∈ (0, 2
3π), we can verify that for all

t ∈ [0, α] w(t) lies within the open set

√
Dα =

{
z ∈ C : Re(z) > |Im(z)| and |z| <

√
3

α

}
, with α ∈

(
0,

2

3
π
)
.

This is a wedge of a disk of radius
√

3
α , between angles −π

4 and π
4 about the x-axis. Following the

proof in [12, Proposition 2], we apply the de Casteljau-like algorithm previously described in Section
2 for the evaluation of trigonometric Bézier curves over the space Ũ2, to split w(t) in correspondence
to the parameter t = α

2 . From equation (3) we get that the control points of the two subcurves wl(t),
wr(t) joining at such location are

wl(t) =
√

x′
l(t) = w0B̃

2
0(t) +m01B̃

2
1(t) +

1

2
(m01 +m12)B̃

2
2(t),

wr(t) =
√

x′
r(t) =

1

2
(m01 +m12)B̃

2
0(t) +m12B̃

2
1(t) +w2B̃

2
2(t),

where

m01 =
cos(α2 )w1 +w0

cos(α2 ) + 1
and m12 =

cos(α2 )w1 +w2

cos(α2 ) + 1
. (37)

By the convexity of
√
Dα and the convex hull property of the generalized Bézier curves built-upon

the normalized B-basis B̃2
i (t), i = 0, 1, 2, it suffices to show that for arbitrary values of w0 and w2

in
√
Dα, m01 and m12 are also contained in

√
Dα. To this purpose, we use the Minkowski geometric

algebra of complex sets [7, 8] and a generalization of Minkowski sums and products by the concept of
an implicitly-defined set A⊙f B = {f(a,b) : a ∈ A,b ∈ B}, corresponding to a given bivariate function
f(a,b) [8]. From (36) and (37) we have that the Bézier coefficients m01 and m12 can be regarded as
complex-valued functions of values w0, w2 chosen from

√
Dα, i.e.

m01 = f0(w0,w2) =
cos(α2 )g(w0,w2) +w0

cos(α2 ) + 1
, m12 = f1(w0,w2) =

cos(α2 )g(w0,w2) +w2

cos(α2 ) + 1
.
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Fig. 14 Visualization of random choices of w0, w2 in the domain
√
Dα (left) and visualization of the hodograph

control points m01 (green) and m12 (blue) lying inside the same domain (right), for α = π
3
(a) and α = 7

12
π(b).

Therefore, the control points m01 and m12 lie in the region defined by

√
Dα ⊙fi

√
Dα = {fi(z1, z2) : z1 ∈

√
Dα, z2 ∈

√
Dα} , i = 0, 1.

Although this implicitly-defined set does not allow a closed-form evaluation, as in the proof of [12,
Proposition 2] we can evaluate it numerically, thus obtaining

√
Dα⊙fi

√
Dα ⊂

√
Dα, for all α ∈ (0, 2

3π).
Figure 14 shows the result for some sample values of α in the interval. As a consequence, w(t) is entirely
contained within

√
Dα for all α ∈ (0, 2

3π), and thus the hodograph x′(t) = w2(t) of the (++) ATPH
interpolant x(t) lies within Dα for all the same choices of α, which leads to the conclusion of the above
conjecture. ⊓⊔

6 Construction of ATPH spirals

In this section we define ATPH spirals as Algebraic-Trigonometric Pythagorean Hodograph curves with
monotone curvature, i.e., with no interior curvature extrema. Spiral segments are widely used in several
practical applications such as, e.g., highway and railway design, or robot path planning. The control
of the curvature behaviour is also desirable in many CAD and CAGD applications. While quintic PH
curves with monotone curvature can be also obtained [6], the advantage of an ATPH spiral lies in the
fact that it allows for higher flexibility and better curvature variation. In the next sections we will
describe a general construction of ATPH spirals to be used as G2 transition elements either between a
line and a circle that do not intersect or between a pair of external circles.

6.1 ATPH spiral for designing a G2 transition between a line and a circle

Let x(t) =
∑5

i=0 piB
5
i (t), t ∈ [0, α] be an ATPH curve with control points pi, i = 0, ..., 5 as in (18)-(22),

where p0 is a complex arbitrary integration constant and wj = uj +ivj = wje
iθj , j = 0, 1, 2. Given two

vectors t0 and tα, in the following we define an ATPH spiral x(t) such that

(a) x(0) = p0, t0 is the tangent at t = 0, κ(0) = 0;
(b) tα is the tangent at t = α, κ(α) = 1

R (R > 0), κ′(α) = 0;
(c) x(t) has monotonically increasing curvature, i.e., κ′(t) > 0 for all t ∈ [0, α].

The resulting algorithm turns out to be a modification of the one proposed in [6], based on polynomial
PH quintics. Following the methodology used in [6], without loss of generality we assume p0 = 0. In
this way x(0) = 0. Moreover, we set t0 = 1 and tα = eiθ, with 0 < θ < π. Thus, being x′(t) = w2(t)
with w(t) in (16), from the second condition in (a) we get x′(0) = w2

0 = w2
0 and from the first condition

in (b) we obtain x′(α) = w2
2 = w2

2e
iθ. From these two equations we immediately have

w0 = w0 ∈ R\{0} and w2 = w2e
i θ
2 , 0 < θ < π, w2 ∈ R\{0}. (38)
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Now, recalling that the (signed) curvature of the ATPH curve has the expression

κ(t) = 2
Im
(
w(t)w′(t)

)
|w(t)|4

, (39)

andw′(0) = cot
(
α
2

)
(w1−w0), the value of κ(0) can be simply written in the form κ(0) = 2 cot

(
α
2

) Im(w1)
w3

0
.

By requiring κ(0) = 0 (third condition in (a)) we thus get Im(w1) = 0, i.e.,

w1 = w1 ∈ R\{0}. (40)

On the other hand, for the endpoint t = α, being w′(α) = cot
(
α
2

)
(w2−w1), and substituting w1 = w1,

from (39) we obtain κ(α) = 2 cot
(
α
2

)
w1

w3
2
sin
(
θ
2

)
. Therefore, requiring that κ(α) = 1

R , with R > 0,

(second condition in (b)) we find w1 =
w3

2 tan(α
2 )

2R sin( θ
2 )

. We now proceed by imposing the condition κ′(α) = 0

(the last of (b)). Since

κ′(t) = 2
Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
|w(t)|6

and w′′(α) =
1

1− cos(α)

(
w0−(1+cos(α))w1+cos(α)w2

)
,

then setting κ′(α) = 0 gives Im
(
3(1+ cos(α)) |w2|2w1w2 + |w2|2w0w2 − 2(1+ cos(α))w2

1w
2
2

)
= 0, and

inserting the values of wj , j = 0, 1, 2, from (38), (40) the last equation provides

w0 =
w3
2

(
2(1− cos(α))w2

2 cos
(
θ
2

)
− 3R sin(α) sin

(
θ
2

) )
2R2 sin2

(
θ
2

) .

Now, introducing the notation M =
w2

2
R , we can rewrite the expressions for the coefficients wj , j = 0, 1, 2

in terms of the parameter M as follows:

w0 = w0 =
√
RM3 2(1−cos(α))M cos( θ

2 )−3 sin(α) sin( θ
2 )

2 sin2( θ
2 )

,

w1 = w1 =
√
RM3 1−cos(α)

2 sin(α) sin( θ
2 )

,

w2 =
√
RM

(
cos
(
θ
2

)
+ i sin

(
θ
2

) )
.

We now still have to satisfy the additional requirement κ′(t) > 0 for all t ∈ [0, α] (condition (c)). This
will provide a lower bound on the admissible values of w2. Looking at the formula of κ′(t), it is evident
that the problem reduces to study a sufficient condition on w2 that guarantees

Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
> 0 ∀t ∈ [0, α]. (41)

Let us start by observing that we can write

Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
=

M3 R2

24s̃5s1c1

6∑
i=0

biB̃
6
i (t),

where {B̃6
i (t)}i=0,...,6 is the normalized B-basis in (2) and

b0 = 12M2s21c1 (2Ms1c̃− 3s̃c1)
3
,

b1 = 2M2s21 (2Ms1c̃− 3s̃c1)
2
(
16Mc̃s1c1 − s̃(24c21 + 1)

)
,

b2 = 4Ms1c1
4c21+1

(
56M4s41c̃

3 − 200M3s31c1s̃c̃
2 + 6M2s21c̃s̃

2(37c21 − 4c̃2 − 1)

+9Ms1c1s̃
3(8s21 − 8s̃2 + 1)− 54c21c̃s̃

4
)
,

b3 = 3Ms1s̃
3+2c21

(
56M3s31c̃

2 − 156M2c1s
2
1c̃s̃+Ms1s̃

2(108c21 − 24c̃2 − 1) + 36c1c̃s̃
3
)
,

b4 = 4c1s̃
2

4c21+1

(
6M3s31c̃(4c̃

2 + 3)− 2M2s21c1s̃(42c̃
2 + 13) + 18Ms1(4c

2
1 − 1)s̃2c̃+ 21c1s̃

3
)
,

b5 = 2s̃3
(
2M2s21(6c̃

2 + 1)− 36Ms1c1s̃c̃+ 3(8c21 − 1)s̃2
)
,

b6 = 0,
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with s̃ := sin
(
θ
2

)
, c̃ := cos

(
θ
2

)
and s1, c1 from (4).

Remark 3 Note that the Bézier coefficient b6 = 0 agrees with the requirement κ′(α) = 0.

Thus, if we assume 0 < α < π/2 and 0 < θ < π, it turns out that any arbitrary choice of w2 satisfying

the inequality w2 >

√
k∗ R tan

(
θ
2

)
with k∗ = 5

2 cot
(
α
2

)
− cot(α), guarantees that all the coefficients

bi, i = 0, ..., 5 are strictly positive and therefore (41) is satisfied. As a consequence, for any arbitrary

k > k∗ we can equivalently set w2 =

√
k R tan

(
θ
2

)
and rewrite the coefficients wj , j = 0, 1, 2 in terms

of the parameter k as follows:

w0 =

√
kR tan

(
θ
2

)
k
2

(
2(1− c2)k − 3s2

)
sec
(
θ
2

)
,

w1 =

√
kR tan

(
θ
2

)
k
2

s1
c1

sec
(
θ
2

)
,

w2 =

√
kR tan

(
θ
2

) (
cos
(
θ
2

)
+ i sin

(
θ
2

))
,

(42)

with si, ci, i = 1, 2 from (4).

L

R

C

θ
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p3

p4

c

p1p0 p2

Fig. 15 Geometrical parameters of an ATPH spiral used
as a G2 join between a line L and a circle C.
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Fig. 16 Behaviour of A(k, α) for α ∈ (0, π/2).

Now, if we want to exploit the ATPH spiral satisfying the above conditions (a),(b),(c) to connect G2

continuously a line L and a circle C that do not intersect, without loss of generality we can assume
L to be the x-axis with the transition curve starting at p0 = x0 and take C of radius R and center
c = l + ih with h > R. We observe that, the requirement κ′(α) = 0 included in (b), indeed implies a
G3 contact of the ATPH spiral with the circle C, while the contact with the line L is only G2.
Measuring the angular position θ on the circle in the anticlockwise sense from a perpendicular dropped
to L from c (see Figure 15), the transition curve is identified by the requirement Im(p5 − p0) =
h−R cos(θ). Using standard trigonometric relations, the last equation leads to

Q(cos(θ)) := a2 cos
2(θ) + a1 cos(θ) + a0 = 0, (43)

where
a0 = 4Rc1n2(1− c2)k

3 +Rs1(n0 − 6n2(c2 + 2))k2 +Rc1n0k − 16c1s
4
1h,

a1 = 4Rc1n2(c2 − 1)k3 +Rs1(6n2(c2 + 2)− n0)k
2 + 16c1s

4
1(R− h),

a2 = −Rc1(kn0 − 16s41).

(44)

Since Q(0) = a0 = Rk
(
4c1n2(1− c2)k

2 + s1(n0 − 6n2(c2 + 2))k + c1n0

)
− 16c1s

4
1h and Q(1) = a2 +

a1 + a0 = 32c1s
4
1(R− h), being 0 < α < π/2 and 0 < θ < π, when h satisfies

R < h < A(k, α)R with A(k, α) = k
(4c1n2(1− c2)k

2 + s1(n0 − 6n2(c2 + 2))k + c1n0)

16c1s41
, (45)
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we have Q(0) > 0 and Q(1) < 0, so that equation (43) has a unique root satisfying cos(θ) ∈ (0, 1).

Note that, when k = k∗
(
= 5

2 cot
(
α
2

)
− cot(α)

)
, then A(k, α) > 1 for all α ∈

(
0, π2

)
and A(k, α) is

monotonically increasing for k > k∗ (see Figure 16). In this way, for any value of α ∈ (0, π/2), we can
make the upper bound on h as large as we want by taking k sufficiently large. Remember also that, if
we denote by k the value such that A(k, α) = h

R , we need to certainly choose k > max(k∗, k) in order
to satisfy (45). See Figure 17 for an illustrative example of this situation.
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Fig. 17 Behaviour of A(k, α) for α = 2
5
π and R = 2, h = 3 (left), R = 1, h = 3 (right).

For the sake of clarity, we conclude by summarizing the steps of the algorithm to draw an ATPH spiral
to connect G2 continuously a line L corresponding to the x-axis and a circle C of radius R > 0 and
center (l, h) with h > R.

Algorithm

Input : l, h > 0, R ∈ (0, h), α ∈ (0, π/2).

1. Choose k such that inequality (45) is satisfied;
2. Compute a0, a1, a2 in (44);
3. Determine θ ∈ (0, π) by solving (43);
4. Work out the values of w0,w1,w2 given in (42);
5. Determine x0 by solving the equation Re(p5 − p0) = l+R sin(θ)− x0.

Output : Control points p0 = x0, pi, i = 1, ..., 4, p5 = l+R sin(θ) + i(h−R cos(θ)) of the ATPH spiral
connecting L and C.

As an application example of the previously developed constructive strategy we consider the following
choices: R = 2, l = 4 and h = 3. In Figure 18 we display the obtained ATPH spiral for α = π

5 , α = π
3

and α = 2
5π when k = k∗, and in Figure 19 the corresponding quintic PH spiral for which k satisfies

R < h < 2k3−3k2+12k
60 R (see [6]). In Figure 20 we plot the behaviour of κ′(t) for the ATPH spirals

in Figure 18 and the quintic PH spiral in Figure 19. As we can see, for an ATPH spiral (black), the
maximum of the function κ′(t) is decreasing for increasing values of α, while for a PH spiral (blue) it
is obviously a fixed value. As a consequence the parameter α can be suitably selected to control the
curvature variation and ensure the most desired behaviour of the ATPH spiral.

Furthermore, by evaluating the arc length of the ATPH spiral over the interval [0, α] from formula (33)
with w0,w1,w2 in (42), we can obtain the length of the ATPH spiral

Sα = k R
4(c2−1)2

tan
(
θ
2

) [(
2(1− c2)n0k

2 + 4
(
(1− c2)(3s

2
2 + 10c2 + 14)− 12αs2

)
k + (47c2 + 49)α

+3s2(3c
2
2 − 11c2 − 24)

)
k2s21 sec

2
(
θ
2

)
− 4(c2 − 1)n2k

2 − 2
(
(c2 − 1)(c2 + 5) + 3s2(n2 + α)

)
k + n0

]
,

with si, ci, i = 1, 2 from (4) and n0, n2 from (5). Observe that, the parameter k can be selected such
that the total arc length Sα assumes a specified value. This requires to solve a polynomial equation



Algebraic-Trigonometric Pythagorean-Hodograph curves 21

of degree 5. Although this is possible also in the polynomial case presented in [6], if using an ATPH
spiral, once the value of k has been fixed, we still have another free parameter α that can be used for
other purposes.
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Fig. 18 First column: ATPH spirals for α = π
5
, π

3
, 2

5
π, where k = k∗. Second column: corresponding curvature plots.
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Fig. 19 Quintic PH spiral for k = 4 (left) and its curvature plot (right).

6.2 S-shaped ATPH spiral for designing a G2 transition between two circles

In this section we consider the problem of designing an S-shaped ATPH spiral to join two given circles
Ω0, Ω1 with centers C0, C1 and radii r0, r1, such that at both points of contact G2 continuity is
ensured. We denote the distance between the centers of the two circles by

r = |C1 −C0|, (46)
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Fig. 20 Behaviour of κ′(t) for the ATPH spirals in Figure 18 with α = π
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π (black) and for the quintic PH spiral

in Figure 19 (blue).

and we define r1 = r0
µ3 , where µ ≥ 1. Moreover, without loss of generality (after suitable translation,

rotation and reflection), for the starting point of the ATPH curve we can assume p0 = 0, as well as the
curvature at the starting point being 1 (i.e. r0 = 1), p1 lying on the positive x-axis (Re(p1) > 0), the
larger circle having the center C0 = i, and the end point p5 lying above the x-axis (Im(p5) > 0). We
then denote by θ and 2nθ the angles from p1 −p0 to p2 −p1 and from p1 −p0 to p5 −p4, respectively
(see Figure 21). By construction, it turns out that θ and 2nθ may vary at most between 0 and π

2 .

θ

p1

p2

2nθ

r1

C1

C0

r0 = 1

p3

p4

p5

p0 = 0

Fig. 21 Geometrical parameters of an S-shaped ATPH spiral used as G2 connection between two external circles.

Summarizing, our goal is to define an S-shaped ATPH spiral that satisfies all the following requirements:

(i) x(0) = p0 = 0
(ii) t0 = 1 is the tangent at t = 0 (i.e., x′(0) ∥ 1)
(iii) tα = e2inθ is the tangent at t = α (i.e., x′(α) ∥ (cos(2nθ) + i sin(2nθ)))
(iv) (p2 − p1) ∥ (cos(θ) + i sin(θ))
(v) (κ(0), κ(α)) = (1,−µ3)
(vi) x(t) has monotonously decreasing curvature, i.e. κ′(t) < 0 for all t ∈ [0, α].

By Kneser’s theorem [10], it follows that a single S-shaped segment cannot have monotone curvature
both in case of tangent and intersecting circles, as well as when one is contained into the other.
Thus, we can draw S-shaped ATPH transitions satisfying the above requirements, only under the
condition r0 + r1 < r. As in the previous section, in order to determine the ATPH spiral solving the
above problem, we need to work out its complex coefficients wj , j = 0, 1, 2. To this end we suitably
modify the methodology presented in [11] for the construction of its polynomial counterpart. First
of all, recalling that x′(t) = w2(t), from (ii) and (iii) we obtain respectively w0 = w0 ∈ R\{0} and
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w2 = w2 e
inθ, w2 ∈ R\{0}. Then, being p2 − p1 = n0−6n2

8s41
w0w1 with w0 = w0, w1 = w1e

iθ1 and

w0, w1 ∈ R\{0}, from (iv) we immediately get θ1 = θ. Before imposing condition (v), we recall once
again that the (signed) curvature of the ATPH curve has the expression in (39). Thus, by requiring

κ(0) = 1, we obtain w1 =
w3

0

2 sin(θ) tan
(
α
2

)
and then w1 =

w3
0
2 tan

(
α
2

)
(cot(θ) + i). On the other hand,

for the endpoint t = α, condition κ(α) = −µ3 leads to w2 = w0
µ

3

√
sin((1−n)θ)

sin θ . In conclusion, after

introducing the notation

h = w2
0, ς =

cos(nθ)

µ

3

√
sin((1− n)θ)

sin θ
, (47)

we can rewrite the coefficients wj , j = 0, 1, 2 in terms of h and ς as follows:

w0 =
√
h

w1 =
√
h h

2 tan
(
α
2

)
cot(θ) + i

√
h h

2 tan
(
α
2

)
w2 =

√
h ς + i

√
h ς tan(nθ).

(48)

Thus, since h, n, µ, θ, α are free parameters, it turns out that there exists a whole family of ATPH
curves x(t) satisfying the conditions (i)-(v). From (18)-(22) with p0 = 0 we obtain

p5 =
n0

16s41
(w2

0 +w2
2) +

n0 − 6n2

8s41
w1(w0 +w2) +

n2

4s41
((1 + c2)w

2
1 +w0w2),

where w0,w1,w2 are given by (48). Also taking into account that the coordinates of the centers of
the two circles are C0 = p0 + r0 (0, 1) = (0, 1) and C1 = p5 + r1 (sin(2nθ),− cos(2nθ)) =: (p(h), q(h)),
having denoted by r the distance between C0 and C1, condition (46) determines a polynomial equation
f(h) = 0 given by f(h) = (p(h))

2 + (q(h)− 1)
2 − r2. Therefore, for any fixed value of r, h needs to be

determined by solving the polynomial equation f(h) = 0. Following the reasoning in [11] we can show
the existence of a positive solution of f(h) = 0, which guarantees the existence of the ATPH spiral.
It is easy to see that, if we further assume µ ≥ 1.5, this solution is also unique. Finally, considering
requirement (vi), κ′(t) < 0 for all t ∈ [0, α], further restrictions on the admissible values of the free
parameters α, θ, n, µ are obtained. Looking at the formula of κ′(t), it is evident that the problem reduces

to study sufficient conditions on the free parameters that ensure Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
< 0

for all t ∈ [0, α]. Writing Im
(
w2(t) (w(t)w′′(t)− 2w′2(t))

)
as a trigonometric Bézier in the space Ũ6,

it is easy to see that this turns out to be negative for all α ∈ (0, π2 ) and considering the following
restrictions on the remaining free parameters: θ ∈ (0, π/4], n ∈ (0, 1/2), µ ∈ [1, 5].
As an application example of the proposed strategy for the construction of S-shaped ATPH spirals,
we consider the following choice: r0 = 1, µ = 3

√
2, r1 = 1

2 , r = 2, n = 1
3 , θ = π

5 . In Figure 22(a),
from top to bottom, we display the quintic PH spiral in [11] and the ATPH spirals with α = 7

24π

and α = 5
12π, obtained from the above data. Note that, although the quintic PH curve in Figure 22

(b) has monotone curvature, in general the S-shaped transition elements constructed in [11] do not
guarantee the fulfillment of condition (vi). Moreover, from Figure 22 we can see that the additional
free parameter α included in the ATPH approach can be used either to modify the location of the
second point of contact of the spiral or to adjust the curvature profile and/or curvature variation of
the spiral (see Figure 23).

7 Conclusions

In this article we have presented a trigonometric analogue of the Pythagorean Hodograph quintic,
featured by the properties of possessing a closed-form representation of its arc–length and a rational
algebraic-trigonometric representation of its offset curves. Slightly more cumbersome in its represen-
tation than its polynomial counterpart, it constitutes an interesting and powerful complement of the
well-known polynomial PH quintics as shown at hand of the solution of several practical interpolation
problems. After introducing a complex representation of the novel class of Algebraic–Trigonometric
PH curves (called for short ATPH curves), ATPH curves that interpolate given end points and asso-
ciated end derivatives have been constructed, as well as ATPH curves of monotone curvature joining
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Fig. 23 Behaviour of κ(t) (left) and κ′(t) (right) for the S-shaped spirals in Fig. 22. From top to bottom the functions
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G2-continuously basic elements such as line segments and circles. In both application contexts we have
shown that the ATPH interpolants complement favorably their polynomial PH counterparts since,
thanks to the shape parameter α, the user may choose the most appropriate interpolant out of a
one-parameter family of solutions. In particular, concerning the C1 Hermite interpolation problem,
we have seen that, although there exist Hermite data such that all possible polynomial PH solutions
manifest undesired self-intersections, ATPH interpolants constructed from the same information turn
out to be free of loops if the free parameter α is suitably selected. Moreover, the free parameter α

can be also conveniently exploited either to improve the curvature behaviour of ATPH spirals joining
G2-continuously a line and a circle, or to adjust the location of the second point of contact of the spiral,
as well as the curvature profile and/or variation in the case of S-shaped spirals joining G2-continuously
a pair of external circles.



Algebraic-Trigonometric Pythagorean-Hodograph curves 25

Acknowledgements

The authors are grateful to the anonymous referees for their useful comments that helped to improve
the paper. Laura Saini acknowledges the financial support received for her PhD work from the Nord
Pas de Calais Région (France) and the University of Valenciennes.

References

1. Carnicer, J.M., Pena, J.M.: Totally positive bases for shape preserving curve design and optimality of B-splines.
Comput. Aided Geom. Design 11, 633-654 (1994)

2. Carnicer, J.M., Mainar, E., Pena, J.M.: Critical length for design purposes and extended Chebyshev spaces.
Constr. Approx. 20, 55-71 (2004)

3. Farouki, R.T., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34, 736-752 (1990)
4. Farouki, R.T. The conformal map z → z2 of the hodograph plane. Comput. Aided Geom. Design 11, 363-390

(1994)
5. Farouki, R.T., Neff, C.A.: Hermite interpolation by pythagorean hodograph quintics. Math. Comp. 64(212),

1589-1609 (1995)
6. Farouki, R.T.: Pythagorean-hodograph quintic transition curves of monotone curvature. Computer-Aided Design

29(9), 601-606 (1997)
7. Farouki, R.T., Moon, H.P., Ravani, B.: Minkowski geometric algebra of complex sets. Geometriae Dedicata

(2000)
8. Farouki, R.T., Moon, H.P., Ravani, B.: Algorithms for Minkowski products and implicitly-defined complex sets.

Adv. Comput. Math. 13, 199-229 (2000)
9. Farouki, R.T.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer-Verlag, Berlin

Heidelberg, 2008
10. Guggenheimer, H.: Differential Geometry. McGrawHill, New York, (1963)
11. Habib, Z., Sakai, M.: Transition between concentric or tangent circles with a single segment of G2 PH quintic

curve. Comput. Aided Geom. Design 25, 247-257 (2008)
12. Moon, H.P., Farouki, R.T., Choi, H.I.: Construction and shape analysis of PH quintic Hermite interpolants.

Computer-Aided Design 18, 93-115 (2001)
13. Mainar, E., Peña, J.M.: Corner cutting algorithms associated with optimal shape preserving representations.

Comput. Aided Geom. Design 16, 883-906 (1999)
14. Mainar, E., Peña, J.M., Sánchez-Reyes, J.: Shape preserving alternatives to the rational Bézier model. Comput.
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