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ABSTRACT  

Conducting polymer actuators have long been of interest as an alternative to piezoelectric and electrostatic actuators due
to their large strains and low operating voltages. Recently, poly (3,4- ethylenedioxythiophene) (PEDOT) – based ionic 
actuators have been shown to overcome many of the initial obstacles to widespread application in micro-fabricated 
devices by demonstrating stable operation in air and at high frequencies, along with microfabrication compatible
processing using a layer by layer method that does not require any handling. However, there is still a need for
characterization, prediction, and control of the actuator behavior. This paper describes the fabrication and 
characterization of thin trilayers composed of a 7 µm thick solid polymer electrolyte (SPE) sandwiched between two 2.1 
µm thick PEDOT-containing layers. Beam properties including capacitance, elastic moduli of the layers, and the extent 
of charge driven strain, are applied to predict curvature, frequency response and force generation.  The actuator is 
represented by an electrical circuit, a mechanical system described via dynamic beam theory, and a strain-to-charge ratio 
for the electro-mechanical coupling matrix, which together predict the actuator curvature and the resonant response. The
success of this physical model promises to enable design and control of micro-fabricated devices.
Keywords: IEAP micro actuator, PEDOT, layer by layer, force generation, modeling, dynamic beam theory, Bond 
Graph. 

1. INTRODUCTION
Electro active polymers (EAPs) has attracted interest in both academic and industrial fields since their mechanical and
electrical characteristics have the potential for widespread application, for instance: locomotion systems 1, steerable
micro catheters 2, micro pumps 3-4, micro actuators 5-7. Poly(3,4-ethylenedioxythiopene) (PEDOT) based-actuators have 
received a lot of attention due to their properties such as: low density, biocompatibility8, high stress, high power/weight 
ratio 9, significant displacement (up to 1%), and low operating voltages 8 in solution or in open-air 10. They can be 
electronically controlled with reasonable frequency response and are potentially suitable for microscale applications.
Actuating layers have been applied in bilayer 11, trilayer 12-14, and multilayer 15 structures in which conducting polymer 
electrode (CPE) layers are directly in contact with solid polymer electrolyte (SPE) layers accommodating ion flow.
However, due to the large charge fluxes required, and the significant electronic and ionic resistances of CPE and SPE
layers, speed of charging and actuation has been slow. These important rate-limiting factors are reducing the response
speed of the actuator 16. A new clean-room compatible process, referred to as Layer-by-Layer (LbL) 17, has been recently
been demonstrated which removes the need for manual handling and promises to make the fabrication of conducting 
polymer actuators highly automated. It also enables thin layers and short device lengths, enabling fast actuation. 
In the LbL fabrication process of a trilayer structure, there is a need to creat CPE layers. PEDOT can be polymerized in-
situ via electropolymerization 18 or via vapour phase polymerization (VPP) 19. In the VPP method, PEDOT thin films
were fabricated by spin-coating an oxidant solution onto silicon substrate and then exposing this substrate to a monomer 
vapor.
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The interpenetrating polymer network (IPN) situated between two PEDOT electrodes plays a role of an electronic 
insulator and an ion transfer membrane. For operation in open air, the trilayer actuator needs to be introduced to the
electrolyte, which is necessary for the redox process, where during the oxidation and reduction ions flow through the ion
transfer membrane. To improve the mechanical properties and ionic conductivity of this SPE, an IPN matrix of two 
cross-linked polymers: polyethylene oxide (PEO) and nitrile-butadiene rubber (NBR) 14, 20 has been designed and 
controlled. 
For the purpose of control and to predict the actuator’s behavior, researchers have developed models. Madden 21 came up
with an analytical model based on the diffusive elastic metal phenomenon to describe chemical process between 
electrolyte and polymer electrode that can be applied to a trilayer actuator, and which was further extended by Shoa 22.
This chemical model was linked to the mechanical deformation by an experimentally determined strain-to-charge ratio – 
an empirical constant that relates injected ionic charge density to strain 21. Alici 23 also proposed an analytical model in 
which emphasizes the effects of the interface between electrolyte and polymer electrode and models it as a capacitor and
a resistor.  

This previous work has employed equivalent circuit models. A related alternative that is explored here is Bond Graph 
methodology. It appears to be a promising candidate as it allows easy access to power transformation, stored power, and 
dissipated power inside these actuators. Bond Graph language has shown its flexibility in working with different energy 
domains and feasibility to describe interactions between systems 24. These characteristics provide an approach for the 
design of actuators and further, the design of complete actuated robots while retaining the physical structure of the model
25. Few works in modeling IEAP actuators using Bond Graphs have been proposed. Byung-Ju Yi concentrated on
diffusion in separator layer and electrodes of ionic polymer-metal composites (IPMCs) and did not describe the
mechanical response. The model was not verified by experiments 26. Nishida developed a more complex model on
IPMCs type using distributed port-Hamiltonian 25, while Bowers built a Bond Graph model of bilayer actuators operating
in a liquid environment 27. Since ionic EAP actuators inherently involve energy flow in multiple energy domains: 
mechanical, electrical, simultaneously with chemical domain, a thorough model for explaining the behavior of this 
actuator is required. Regarding the work that has been accomplished on fabrication and modeling of trilayer actuators,
there is a need to improve the fabrication process and develop a more adaptable model to predict actuator behavior. 
Within this work, an improvement in the LbL process to synthesize an ultrathin trilayer structure in a cleanroom 
environment will be described. A key advance is the precise control of the VPP by using a vacuum heating plate 
allowing the fine control of pressure and temperature during the process. Following this step, the microbeam dimensions
and composition were studied under scanning electron microscope (SEM), via energy-dispersive X-ray (EDX) analysis 
and through mechanical, electrochemical and electromechanical testing. In next step, an IEAP actuator model is being 
developed. An RC electrical circuit is represented for physical model, the electromechanical coupling matrix is based on
the accepted relationship between the strain and the volumetric charge density (strain is proportional to charge density
multiplied by an empirically derived strain to charge ratio), and a mechanical model is coupled in based on the modal 
superposition method to treat Euler-Bernoulli dynamic beam equations for beam displacement. This model will provide
physical insight into IEAP actuator behavior, which should enable designers to optimize the system through identified 
critical parameters. Furthermore, the model can then be expanded to describe complex actuator geometries and 
interactions with other systems.

2. EXPERIMENTAL SECTION

2.1 Fabrication

The synthesis of a trilayer actuator is based on the LbL method which was first described by Maziz28, where all the
layers are spin coated and deposited on top of previous layers. The overall process is shown in Fig. 1. In this study, the
LbL process has been adapted to clean room compatible microfabrication. The first PEDOT electrode layer was
synthesized by mixing Poly(ethylene glycol) methyl ether methacrylate (PEGM) (50 wt. %) and Poly(ethylene glycol)
dimethacrylate (PEGDM) (50 wt. %), known as PEO precursors, with Fe(III) p-toluene sulfonate oxidant solution in 
butanol. PEO precursors were added to this layer, and to all the subsequent layers, and polymerized finally throughout 
the trilayer structure to improve the adhesion between the layers as well as increase ionic conductivity. A solution was
stirred during 10 min and spin coated on a 2-inch silicon wafer. The oxidant solution coated wafer was then placed on a
vacuum hot plate for EDOT VPP at 45 oC for 50 minutes under vacuum. EDOT monomer droplets were placed in the
vacuum system on a glass slides situated around the wafer to obtain a homogenous PEDOT layer. 
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