Skip to Main content Skip to Navigation
Conference papers

Application Sequence Prediction for Energy Consumption Reduction in Mobile Systems.

Abstract : The success of mobile devices as measured by market penetration is undeniable. Tablets and Ultrabooks are enjoying similar growing enthusiasm among the worldwide population. By offering an ever increasing number of functionalities, these devices turned to be even more subject to energy constraints than the previous generation. Limited battery autonomy becomes a major user concern and cause of dissatisfactions. Therefore, managing efficiently the energy consumption can improve mobile systems reliability, battery life as well as user experience. In this paper we propose a new approach to optimize mobile devices energy efficiency based on use patterns detection. By identifying and classifying users behaviors, we can significantly improve over the platforms stock power managers. To do so, a run-time service is proposed to collect usage data, which in turn can be mined using machine learning techniques. Our approach allows us to predict future applications usages, so the CPU frequency, Wi-Fi connectivity and the playback sound-levels can be optimized while meeting the applications and the users requirements. Our experimental results show that the proposed solution can lower the energy consumption by up to 20% vs. the out-of-the-box power governor, while maintaining a negligible system overhead.
Document type :
Conference papers
Complete list of metadata

https://hal-uphf.archives-ouvertes.fr/hal-03384997
Contributor : Mylène Delrue Connect in order to contact the contributor
Submitted on : Tuesday, October 19, 2021 - 11:53:15 AM
Last modification on : Thursday, October 21, 2021 - 5:02:27 AM

Identifiers

Collections

Citation

Ismat Chaib Draa, Jamel Tayeb, Smail Niar, Emmanuelle Grislin-Le Strugeon. Application Sequence Prediction for Energy Consumption Reduction in Mobile Systems.. 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), Oct 2015, Liverpool, United Kingdom. pp.23-30, ⟨10.1109/CIT/IUCC/DASC/PICOM.2015.7⟩. ⟨hal-03384997⟩

Share

Metrics

Record views

5