N

N

Greedy heuristics for identical parallel machine
scheduling problem with single server to minimize the
makespan
Abdelhak El Idrissi, Mohammed Benbrahim, Rachid Benmansour, David

Duvivier

» To cite this version:

Abdelhak El Idrissi, Mohammed Benbrahim, Rachid Benmansour, David Duvivier. Greedy heuristics
for identical parallel machine scheduling problem with single server to minimize the makespan. Second
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’18), National
Institute Of Posts And Telecommunications, May 2018, Rabat, Morocco. pp.00001, 10.1051/matec-
conf/201820000001 . hal-03392177

HAL Id: hal-03392177
https://uphf.hal.science/hal-03392177

Submitted on 28 Apr 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://uphf.hal.science/hal-03392177
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MATEC Web of Conferences 200, 00001 (2018)
IWTSCE’18

https://doi.org/10.1051/matecconf/201820000001

Greedy heuristics for identical parallel machine scheduling problem
with single server to minimize the makespan
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Abstract. This paper considers the problem of scheduling a set of n independent jobs on m identical parallel
machines with setup times constraints. Immediately before processing, each job must be loaded on a common
server to perform the setup operation. During the loading operation, both the machine and the server are
occupied. Two greedy heuristics are developed for (/n > 2) in order to minimize respectively the server waiting
time and the machine idle time. These heuristics generalize those proposed in the literature for the case of two
machines. The computational results show the efficiency of the proposed heuristics.

1 Introduction

In this paper, we consider a parallel machine scheduling
problem with a single server (PSS) and the minimization
of the makespan. Throughout this paper we consider the
static version of the problem were all jobs are available at
the beginning of the schedule. Scheduling problem under
server constraints are intensively studied, only for special
cases such as equal setup time, equal processing time and
equal length (the sum of setup time and processing time),
regular job constraints or the case of two machines. In this
paper, the case of an arbitrary number of machines for the
PSS problem is studied.

The PSS problem is denoted by Pm, S 1|s;, pj|Cynax us-
ing the standard scheduling notation, where m represents
the number of identical parallel machines, S1 represents
the only available server, and s; and p; are respectively the
setup time of job j and its processing time. The objective
function considered in this problem is the minimization
of the makespan C,,,,. The complexity has been studied
by Kravchenko and Werner [1]. The authors showed that
the problem Pm,S1|s; = 1|Cjpqy is unary NP-hard and
analyze several list scheduling heuristics. The complexity
for the case of two machines and also an arbitrary number
of machines is discussed by Bruker ez al. [2] for all of
the well-known objective functions Cyy; 2, Cj; X w;Cj;
22U, XwiUs 3T Y w;T; and Lipgy.

In 2006 Abdelkhodaee et al. [5] extended their pre-
vious study in [4],[3] dealing with the regular case where
pi — pj < s; Vi, j and the case of equal setup time and
equal processing (see also [13]) for the P2, S 1|s;, p;|Cinax-
The authors proposed two greedy heuristics, a genetic al-
gorithm, and the Gilmore-Gomory algorithm for the gen-
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eral case of the P2, S 1||Cy. The analysis started in [5]
has been extended by Gan et al. [6], in which two mixed
integer linear programming formulations and two variants
of a branch-and-price scheme were developed.

Moreover, Hasani et al. [7] developed two metaheuris-
tics namely simulated annealing (SA) and genetic algo-
rithm (GA), for the problem P2, S 1||C,,4x. The results ob-
tained are much better than all the previous algorithms
and models proposed in [5], [6]. Hasani et al. [8] pro-
posed also two algorithms to solve very large instances for
P2,51||Cppax- The computational results showed that the
two algorithms outperformed the precedent methods exist-
ing in the literature, however, for small-sized and medium-
sized instances, the results obtained were not promising.

Recently, Arnaout [9] proposed an ant colony opti-
mization (ACO) metaheuristic for P2, S 1||C,,..x. The com-
putational results showed that the proposed method out-
performed the metaheuristics (SA) and (GA) proposed in
[7] for large instances of the problem. The problem with
several machines (m > 3) was only studied by Kim and
Lee [10]. The authors proposed two mixed integer pro-
gramming formulations. The first one is developed using
assignment and positional date variables, and the second
one is developed by adding the concept of the server wait-
ing time. A hybrid heuristic algorithm combining simu-
lated annealing and tabu search is also suggested.

The remainder of this paper is organized as follows. In
Section 2, we present the problem formally. In Section 3,
two greedy heuristics algorithms for an arbitrary number
of machines are proposed with two lower bounds. We con-
duct computational experiments in Section 4 to show the
performance of those heuristics in comparison with the lit-
erature. The conclusion and future works end this paper.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).
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2 Problem description

The aim of this section is to give a detailed description
of the PSS problem. It can be described as follows.
Suppose there are m identical parallel machines which
must process n independent jobs. Each job i has a
known integer processing time p;. Immediately before
its processing, job i must be loaded on a machine by the
server. This duration, which can be also considered as
a setup operation has a known integer value s;. During
the setup operation, both the machine and the server are
occupied and after loading a job on a particular machine
the server becomes available for loading the next job.
The processing operation starts immediately after the end
of setup. The preemption during setup and processing
operations of jobs is not allowed. The objective is to find
a feasible schedule that minimizes the makespan.

The following notations are used to define the problem
throughout the paper:

e n: number of jobs.

e m: number of machines.

e N ={1,...,n}: setof jobs.
e M=1{1,..

e p;: the processing time of the job i.

.,m}: set of machines.

e s;: the setup time of the job i.
e A={A|,Ay,...,A,}: the list of jobs to be scheduled.

e B = {By,B,,...,B,}: the scheduled list sequence ob-
tained by the heuristic.

e S1(J;): the starting time of the setup operation of job i.

e C(J;): the completion time of the processing operation
of job i.

o C(M,): the completion time of the last scheduled job on
machine k.

e R;: Sort the jobs in increasing order of their processing
times (SPT).

e R,: Sort the jobs in decreasing order of their processing
times (LPT).

e Rj: Sort the jobs in increasing order of their setup times
(SST).

e R4: Sort the jobs in decreasing order of their processing
times (LST).

® Rs: Sort the jobs in increasing order of the sum of their
processing and setup times (SPST).

® Rg: Sort the jobs in decreasing order of the sum of their
processing and setup times (LPST).

3 Two Greedy heuristics

In this section, we propose two complementary greedy
heuristics called HS1 and HS2 for the PSS problem under
consideration in order to minimize respectively the server
waiting time and the machine idle time. Indeed, it has
been shown that the minimization respectively of the total

server waiting time (i.e. the gaps between the loading of
two jobs) and the minimization of the machine idle time is
equivalent to the minimization of the makespan (see Kim
and Lee [10]). The basic aim at each step of the two heuris-
tics is, if possible, not to generate any machine idle time
or any server waiting time.

3.1 Greedy heuristic HS1

This heuristic HS1 aims, to minimize machine idle time
(the time machines are idle due to unavailability of the
server). The pseudo-code of the proposed heuristic is as
follows (see Algorithm 1).

In the first step jobs are arranged in a list in increasing
order of their setup times. Then the first available m — 1
jobs of the list are sequenced on the first available ma-
chines. After that, we sort the available unsequenced jobs
according to some criterion and then choose an eligible job
(i.e. one that would not create any machine idle time). If
no eligible jobs exist we select the first job in the list. The
list may be arranged in decreasing or increasing order of
job lengths, setup times or processing times.

3.1.1 lllustrative example

Given an instance of n = 10 jobs and m = 3 machines.
The processing times p; and setup times of the jobs s; are
given in Table 1. The makespan value can be obtained by
applying the heuristic HS1 as given above. It takes 0.002
seconds to solve the problem with the heuristics HS1. All
the heuristics have been implemented using C++ language
on a personal computer Intel(R) Core(TM) i5-2410M CPU
@ 2.30 GHz with 8 GB of RAM memory. The feasible se-
quence is shown in Figure 1. With a value of the objective
function (makespan) of 53.

Job|1]2 |3 (4|56 |7|/8]9]10
Di 9| 11|13 |6 14
S; 214 |6 13105

o0
el
oo
-
el

S
%)
N

Table 1: Example instance with (n = 10, m = 3)

M1 [ [ [0b4] | Job7 [ J job10 | ‘ } Job9 ‘
1 7 el ] 37 43 53
M2 L] Job1 \ [ Job3 ’ \ [ jobs |
— 12 S 31 39 - 51
M3 \ J Job2 } | 1005 I | Jobs
3 18 29 53

Figure 1: Feasible schedule for the (n = 10,m = 3) prob-
lem instance obtained by the heuristic HS1

In this illustrative example, we sort the initial list of
jobs in increasing order of their setup times, then we
schedule the first m—1 jobs on the first available machines,
after this step, we sort for the second time the remaining
jobs with the R; rule (longest processing time) and we start
the job selection. Thus job J4 and job J1 are considered



MATEC Web of Conferences 200, 00001 (2018)
IWTSCE’18

https://doi.org/10.1051/matecconf/201820000001

Algorithm 1: HS1 Heuristic

1 Sort the initial list A = {A}, A,,...,A,} in increasing
order of setup times
2 B0
sfork=1 to m—-1do
Bk — Ak, Ak 0
Execute B, on Machine M,
C(By) = SU(Bx) + s(By) +p(By)
St(Bys1) = St(By) + s(By)
C(My) = C(By)
B «— B U {By}

10 Sort the remaining list A according to one of the
scheduling rule R;

1Mie—m t<m

12 j « argmin(C(Mp))

R - Y N

heM
13 whilei <n—-1do
14 test=0
15 fork=m to n-1do
16 if (C(M)) =
max{S#(B;_1) + s(Bi_1); C(M)} + s(Ap))
then

17 test «— 1
18 B; « A
19 Execute B; on Machine M,
20 C(By) = St(B;) + s(B;) +p(B))
21 A(—A\{Ak}, B(—BU{B,}
2 C(M,) = C(B)
23 t « argmin(C(M;))

heM
24 j < argmin(C(M,))

veM\M,
25 St(Biv1) = max{S#(B;) + s(B;); C(My)}
26 i—i+1
27 break
28 if test=0 then
29 fork=m to n-1do
30 if (C(M;)<
max{S#(B;_1) + s(Bi_1); C(M)} + s(Ay))
then
31 test «— 1
32 B; « Ay
33 Execute B; on Machine M,
34 C(B:) = St(B;) + s(B;) +p(B)
35 A«—A\{A, B« BU{B;}
36 C(M,) = C(B)
37 t « argmin(C(M;))
heM
38 j < argmin(C(M,))
veM\M,
39 St(Bir1) =
max{S#(B;) + s(B;); C(M,)}

40 i—i+1
41 break

42 Execute B, on Machine M,
43 Cmax — maX{C(Ml)’ eees C(Mm)}

as the first jobs. Then, the third job must be scheduled on
the first available machine (machine M3) and a decision
must be made according to the end of the setup time of
the last scheduled job J1, the completion time of the last
job scheduled on the next available machine, in this step
the machine M1 was the next available one and the com-
pletion time of last job scheduled on the current available
machine. Indeed, to minimize the machine idle time as
much as possible, the best way is to choose a job whose
loading time is less than or equal to the completion time
of the next available machine minus the maximum value
of the end of setup time of the last scheduled job in the
finale list B and the completion time of the last job sched-
uled on the current available machine. Thus, the job J2
has to be selected as the third job. The fourth unscheduled
job, which has to be determined, must be scheduled on
the first available machine (machine M1) and must have
a set-up time less than or equal to the completion time of
the next available machine (Machine M2) minus the max-
imum value of the end of setup time of the last scheduled
job (job J2) and the completion time of the last job sched-
uled on the current available machine (job J4). Among the
remaining unscheduled jobs, job J7 will be chosen. And
so on until scheduling all of the remaining jobs.

3.2 Greedy Heustic HS2

In this section, we present the second greedy heuristic HS2
to minimize the gap between the completion time of the
setup operation of a job and the start of setup operation
of the next job. Contrarily to the heuristic Min-loagap
proposed for the case of two machines by Hasani et al.
[8] where the jobs were scheduled in staggered order on
machines (i.e. jobs alternate between machines), in this
heuristic the jobs are scheduled according to the availabil-
ity of the machines. And the job with the minimal pro-
cessing time is considered as the last job to be scheduled
in the final sequence.

3.2.1 lllustrative example

Given an instance of n = 10 jobs and m = 4 machines.
The processing times p; and setup times of the jobs s; are
given in Table 2. The makespan value can be obtained by
applying the heuristic HS2 as given above. It takes 0.002
seconds to solve the problem with the heuristics HS2. The
feasible sequence is shown in Figure 2. With a value of
the objective function (makespan) of 90. In this example
equality C,,,x = LB holds.

Job | 1|23 |4]5]|6|7 8 |19 10
Di 21418 [3[5]6|7 |9 |7 |2
S 8171214 |8]9|10]|14 |11 |5

Table 2: Example instance with (n = 10,m = 4)

In this illustrative example, we sort the initial list of
jobs according to the longest processing time rule (R»),
then we schedule the first m — 1 jobs on the first available
machines, and the job with the minimal processing time
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Algorithm 2: HS2 Heuristic

1

R - B Y N

15
16
17
18

19
20
21
22
23
24
25

26

27
28
29

30
31
32

33
34
35
36
37
38
39

40

41

42
43

44

Sort the initial list A = {A{, A», ...
one of the scheduling rules R;

B« 0

Find the job Ay € A, k € {1, .., n} with the smallest
processing time

,A,} according to

By, — Ak
A — A, Yietk,.,n—1}
fork=1 to m-1do
Bk — Ak, Ak — 0
Execute B, on Machine M,
C(By) = St(By) + s(By) +p(By)
St(Bi+1) = St(By) + s(By)
C(My) = C(Br)
B «— BU{B}
ie—m, t<—m

J <« argmin(C(Mp))
heM

whilei <n—1do
test=0
fork=m to n-1do
if (C(M))<
max{S#(B;-1) + s(Bi-1); C(M)} + s(Ay))
then
test « 1
Bi — Ak
Execute B; on Machine M,
C(B;) = St(B;) + s(B;) +p(B;)
A« A\{A}, B— BU{B;}
C(M;) = C(B))
t « argmin(C(My))
heM
j < argmin(C(M,))
veM\M,
St(Biy1) = max{S#(B;) + s(B;); C(My)}
i—i+1
break

if test=0 then
fork=m to n-1do
if (C(M;)=>
max({S#(B;-1) + s(Bi-1); C(M)} + 5(Ar))
then
test « 1
Bi — Ak
Execute B; on Machine M,
C(B;) = St(B;) + s(B;) +p(B;)
A« A\{A}, B— BU{B;}
C(M;) = C(B)
t « argmin(C(My))
heM
Jj < argmin(C(M,))
veEM\M,
St(Biy1) =
max{S#(B;) + s(B;); C(M,)}
i—i+1
break

Execute B, on Machine M,
Cmax — maX{C(Ml), [AD) C(Mm)}

mr () [ Jod (b

14 \ 75f ﬁ B3
. TE B
3 [ e [

M4 T

75
e ey
Figure 2: Optimal schedule for the (n = 10, m = 4) prob-
lem instance obtained by the heuristic HS2

Server

is scheduled in the last position of the schedule. Thus job
J8, job J3 and job J7 are considered as the first jobs. After
this step, we start the job selection. The fourth job must
be scheduled on the first available machine and a decision
must be made according to the end of the setup time of
the last scheduled job J7, the completion time of the last
job scheduled on the next available machine, in our case
the machine M1 was the next available one and the com-
pletion time of last job scheduled on the current available
machine. Indeed, to minimize the server waiting time as
much as possible, the best way is to choose a job whose
loading time is greater than or equal to the completion time
of the next available machine minus the maximum value
of the end of setup time of the last scheduled job in finale
list B and the completion time of last job scheduled on the
current available machine. Thus, the job J9 has to be se-
lected as the fourth job. The fifth unscheduled job, which
has to be determined, must be scheduled on the first avail-
able machine (machine M1) and must have a set-up time
greater or equal than the completion time of the next avail-
able machine (machine M2) minus the maximum value of
the end of setup time of the last scheduled job and the com-
pletion time of last scheduled on the current machine (job
J8). Among the remaining unscheduled jobs, job J6 will
be chosen. And so on until scheduling all of the remaining
jobs.

3.3 Lower bounds

The investigation of lower bounds is useful for bench-
marking heuristic solutions. Thus, to evaluate the quality
of the solutions, the following lower bounds are proposed.

Proposition 1.
1
LBl = — i i
~ Z {pi + s:)
1<i<n
is a lower bound for the problem of P, S||Cnax-

Proof. by contradiction:
if LBL < L3 o {pi+ s}

In contradiction with the fact that the makespan can-
not take a value less than the sum of the processing times
and the setup times of all jobs divided by the number of
machines. O
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Proposition 2.

LB2 = E S; + min Di
I<i<n
1<i<n

is a a lower bound for the problem of P, S ||Cnax-

Proof. In an optimal schedule, the solution will have a
value of 3;.;c, s; plus the processing time of the last
scheduled job. Indeed, the makespan is equal to the sum
of setup times plus the total server waiting times as shown
by Kim et al. [10] i.e. Cpax = Xi<jcn S + SWTT (with:
SWTT is the total server waiting time) and in an optimal
schedule the total server waiting time will be equal to the
processing time of the last executed job. So to obtain a
good lower bound, the last scheduled job in the sequence
should have the smallest processing time. O

Combining the two lower bounds LB1 and LB2, we
obtain an overall lower bound LB = max{LB1; LB2} on
the value of the makespan solution Cy,,. To show the
effectiveness of the lower bound, we have compared it
with the linear relaxation of the MIP models proposed by
El idrissi et al. [11] for several instances. We have found
that our LB is approximately equal to the linear relaxation
for the majority of the cases, which shows its effectiveness.

4 Computational experiments
4.1 Description of data

In this section, we conduct a computational experiment
where the above, heuristics HS1, HS2 and lower bounds
are implemented. The data was generated in the same way
as described firstly by Koulamas [12], and also described
lately by Abdekhodaee and Wirth [3] and Hasani et al. [8].
The data are generated in the uncorrelated case, where the
processing time values p; are generated from a discrete
uniform distribution U(0, 100) and setup time values s; are
generated from a discrete uniform distribution U(0, 100L)
where L = E(s;)/E(p;) is the server load and E(x) denotes
the mean of x.

HS1 was used for instances with LB = LB1, and HS2
for the instances with LB = LB2. From the experiments,
it turned out that for all instances with L € {0.1,0.5,0.8},
equality LB = LBI1 always holds and for all instances
with L € {1.5,1.8,2}, equality LB = LB2 always holds.
However, for the instances with L = 1, both lower
bounds have to be taken into account. In the following, if
L €{0.1,0.5,0.8} HS1 is only used and if L € {1.5, 1.8, 2}
HS?2 is only used.

In order to compare the performance of our proposed
heuristics with the literature, three factors are used: a fixed
number of machines, the problem size fixed to three lev-
els: small-size instances with n € (8,20), medium-size
instances with n € (30, 40, 50, 100) and large-size instance
with n € (200, 250, 300, 350). The server load is also fixed
toL €{0.1,0.5,0.8, 1.5, 1.8, 2}, for each value of the server
load 5 instances are generated randomly for n € {8, 20} and
10 instances were generated randomly for each of the other
value of n, m and L.

4.2 Performances

To evaluate the efficiency of the proposed heuristics, com-
putational experiments were designed and conducted. The
computational results with HS1 for small, medium and
large-sizes instances are given in Table 3 and Table 4 and
the computational results with HS2 for small, medium and
large sizes instances are given in Table 5 and Table 6. In
Tables 3, 4, 5, 6, column 1 gives the number of jobs,
column 2 gives the number of machines, column 4 until
the last column give the values R,,,, denoting the average
value of the ratio Cy,,/LB, and R,,,,, denoting the maxi-
mum value of the ratio Cy,,/LB among all instances for a
particular value of L and for a particular heuristic.

Comparing the obtained results for HS1 with the
results in Hasani et al. [8] for the Min-idle algorithm
which we denote as (Mit) and the results in Abdekhodaee
and Wirth [3] for forward heuristic which we denote as
(FH) and also comparing the obtained results for HS2
with the results in Hasani et al. [8] for the Min-loadgap
algorithm which we denote as (MIg) and the results in
Abdekhodaee and Wirth [3] for backward heuristic which
we denote as (BH) when using the same instances, the
following summary can be given:

In Table 3, HS1 is compared with FH and Mit for
L € {0.1,0.5,0.8} and for m = 2 since FH and Mit can be
applied to only the case of two machines. It must be noted
that FH and Mit provide the same result for all proposed
instances. With R, (LPT) rule and for the case of L = 0.1
HS1 outperform by far the two heuristics FH and Mit for
the majority of cases. For L = 0.5 and L = 0.8 FH and Mit
are better than HS1 for the two proposed scheduling rules
R2 and R4.

In Table 4, HS1 is compared with FH in the case of
L = 0.1 for medium/large instances. It is observed that
HS1 with the LPST rule is better than FH in term of devi-
ation from the lower bound in the most of the data sets n €
{50, 100, 150, 200}. In some cases of n € {250, 300, 350},
HS1 with the LST rule gives the same results in compari-
son with FH.

In Table 5, HS2 is compared with BH and Mlg for
small size instances. The symbol * is used to specify that
no solution can be found since Mlg was proposed only for
the case of two machines and for BH we adapted the algo-
rithm for the case of arbitrary number of machines. With
R, (LPT) rule and for the case of m € {2,3,4,5} HS2 is
better than BH in term of deviation from the lower bound
for some cases for m > 2 and also it gives less precise
results in comparison with Mlg.

In Table 6, HS2 is compared with BH for medi-
um/large instances. With LPT rule and for m € {3,4, 5},
HS2 outperform BH in term of deviation from the lower
bound for the most cases and for all values of the server
load L € {1.5, 1.8, 2}. Therefore, with LST rule the heuris-
tic HS2 gave less precise results in comparison with BH
and with the R, rule also. It must be noted that the so-
lution time with all proposed heuristics (HS1, HS2, BH,
FH, Mit, Mlg) and for all proposed instances don’t exceed
0,006 seconds.
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n m L=0.1 L=05 L=08
HSI-LPT  HSI-LST FH/Mit)  HSI-LPT  HSI-LST FH/Mit) HSI-LPT  HSI-LST  FH/Mit)

8 2 Ravg 1.01413 1.03591 1.03591 1.11347 1.17261 1.08607 1.17999 1.20681 1.13497
Rinax 1.03659 1.11385 1.11385 1.19561 1.30882 1.13388 1.34456 1.35988 1.17917

20 2 Ravg 1.0132 1.02269 1.02464 1.08481 1.06107 1.04708 1.19439 1.08417 1.1065
Ryax 1.02339 1.03768 1.04288 1.12479 1.13828 1.09338 1.26943 1.17402 1.27185
50 2 Ry 1.00423 1.01033 1.01119 1.05972 1.0205 1.01431 1.14087 1.06299 1.03064
Ruax 1.00779 1.03451 1.0308 1.077 1.03686 1.02459 1.17022 1.12111 1.0761
100 2 Ravy 1.00341 1.00611 1.00611 1.06456 1.01405 1.0091 1.15299 1.04793 1.02527
Ruax 1.00821 1.01296 1.01296 1.08852 1.04478 1.03046 1.18127 1.08919 1.04048
150 2 Rayg 1.00539 1.00459 1.00459 1.06214 1.00572 1.00429 1.1301 1.01687 1.00722
Ripax 1.00953 1.00745 1.00745 1.08458 1.01021 1.00822 1.1466 1.03687 1.01504
200 2 Rayg 1.004 1.00484 1.00484 1.06572 1.00443 1.00259 1.13859 1.01611 1.00844
Ruax 1.00564 1.00825 1.00825 1.07941 1.00985 1.00518 1.15395 1.02805 1.01666
250 2 Ry 1.00425 1.00251 1.00251 1.06451 1.0037 1.0023 1.13322 1.01129 1.00498
Ruax 1.00534 1.00614 1.00614 1.08621 1.00883 1.0061 1.15714 1.0228 1.01124
300 2 Ry 1.00478 1.00182 1.00182 1.06345 1.00144 1.00098 1.14009 1.02038 1.00678
Rinax 1.00699 1.0047 1.0047 1.07094 1.00509 1.00262 1.14519 1.03069 1.01391
350 2 Ravg 1.00404 1.0009 1.0009 1.06402 1.00122 1.00098 1.13749 1.01518 1.00646
Ruax 1.00532 1.00248 1.00248 1.07527 1.00395 1.00167 1.17283 1.03719 1.02185

Table 3: Computational results with HS1 heuristic for small/medium and large-sizes instances

n m L=0.1
HSI-SST  HSI-LST  HSI-SPT  HSI-LPT  HSI-SPST  HSI-LPST FH
50 2 Ravg 1.01833 1.01033 1.02 1.00423 1.02074 1.00391 1.01119
Ruax 1.03776 1.03451 1.03127 1.00779 1.03253 1.00928 1.0308
100 2 Ravg 1.01191 1.00611 1.00931 1.00341 1.01007 1.00235 1.00611
Ryax 1.02391 1.01296 1.01621 1.00821 1.0139 1.00602 1.01296
150 2 Rayg 1.01008 1.00459 1.00787 1.00539 1.0065 1.0045 1.00459
Ryax 1.0144 1.00745 1.01156 1.00953 1.00798 1.008 1.00745
200 2 Ravg 1.0109 1.00484 1.0057 1.004 1.00459 1.00337 1.00484
Ryax 1.01831 1.00825 1.00857 1.00564 1.00582 1.0044 1.00825
250 2 Rag 1.00831 1.00251 1.00391 1.00425 1.00377 1.00341 1.00251
Rinax 1.01483 1.00614 1.00686 1.00534 1.00494 1.00463 1.00614
300 2 Ravg 1.00829 1.00182 1.00303 1.00478 1.00318 1.00404 1.00182
Ruax 1.01161 1.0047 1.00527 1.00699 1.00431 1.00624 1.0047
350 2 Rayg 1.00723 1.0009 1.00339 1.00404 1.0027 1.00327 1.0009
Ripax 1.00994 1.00248 1.00546 1.00532 1.00374 1.00433 1.00248

Table 4: Computational results with HS1 heuristic for medium and large-sizes instances for L = 0.1

n m L=15 L=138 L=2
HS2-LPT BH Mlg HS2-LPT BH Mlg HS2-LPT BH Mlg
8 2 Ravy 1.04044 1.02051 1.03388 1.03848 1.0274 1.03959 1.03309 1.02827 1.0348
Ryax 1.16529 1.08058 1.16942 1.11372 1.11372 1.11045 1.09957 1.09668 1.13131
3 Rayg 1 1 * 1.00103 1.01303 ® 1.00101 1.0206 ®
Runax 1 1 * 1.00266 1.0625 * 1.00504 1.05804 *
20 2 Rug 1.02533 1.02085 1.01949 1.044 1.03147 1.05137 1.01054 1.00295 1.00536
Ruax 1.039 1.03874 1.04212 1.09224 1.07453 1.09835 1.03893 1.01416 1.02679
3 Rayg 1.00045 1.00076 * 1.00011 1.00011 * 1.0001 1.0001 *
Ryax 1.00226 1.00226 * 1.00057 1.00057 ® 1.0005 1.0005 ®
4 Ravg 1.00083 1.00547 * 1 1 * 1 1 *
Ruax 1.00413 1.02324 * 1 1 * 1 1 *
5 Rag 1 1 * 1 1 * 1.00011 1.00011 *
Ryax 1 1 * 1 1 * 1.00054 1.00054 *

Table 5: Computational results with HS2 heuristic for small-sizes instances

5 Conclusion

In this contribution, the problem Pm, S1|s;, p;|Cpax Was
considered. Two greedy heuristics were proposed to solve
this problem for small, medium and large instances. The
first one was developed for instances with LB = LBI,
and the second one for instances with LB = LB2. The
heuristics performed extremely well in terms of the devi-
ation from the proposed lower bounds for small/medium
and large instances and also in terms of the low compu-
tational times. A performance comparison was performed
between these two heuristics and other heuristics proposed
in the literature for the case of two machines and also an
arbitrary number of machines. The comparison shows that

our heuristic HS1 outperform the literature in term of devi-
ation from the lower bound in some cases. And the heuris-
tic HS2 outperforms by far the literature for the case of
arbitrary number of machines.

In future work, it is intended to investigate several
types of metaheuritics for the parallel machine scheduling
problem with single server, and also take into consider-
ation other types of objective functions such as the total
completion time or the total tardiness.
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