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Abstract. In this paper, we propose two new diving heuristics for finding a feasible
solution for a mixed integer programming problem, called variable neighbourhood (VN)
diving and single neighbourhood (SN) diving, respectively. They perform systematic hard
variable fixing (i.e. diving) by exploiting the information obtained from a series of LP
relaxations in order to generate a sequence of subproblems. Pseudo cuts are added
during the search process to avoid revisiting the same search space areas. VN diving is
based on the variable neighbourhood decomposition search framework. Conversely, SN
diving explores only a single neighbourhood in each iteration: if a feasible solution is not



found, then the next reference solution is chosen using the feasibility pump principle and
the search history. Moreover, we prove that the two proposed algorithms converge in a
finite number of iterations (i.e. either return a feasible solution of the input problem, or
prove its infeasibility). We show that our proposed algorithms significantly outperform
the CPLEX 12.4 MIP solver and the recent variants of feasibility pump regarding the
solution quality.

Keywords: Mixed Integer Programming, Constructive Heuristics, Feasibility
Pump, CPLEX

MSC: 90B06, 90C05, 90C08

1. Introduction

The mixed integer programming (MIP) problem can be formulated as follows:

(P ) min{cTx | x ∈ X}, (1)

where X = {x ∈ Rn | Ax ≤ b, xj ∈ {0, 1} for j ∈ B, xj ∈ Z+ for j ∈
G, lj ≤ xj ≤ uj for j ∈ C ∪ G} (B,G, C respectively constitute the index sets for the
binary (0-1), integer (non-binary) and continuous variables) is the feasible set, cTx
is the objective function, and x ∈ X are the feasible solutions. In the special case
when G = ∅, the resulting MIP problem is called the 0-1 MIP problem (0-1 MIP).
The LP-relaxation of problem P , denoted as LP(P ), is obtained from the original
formulation by relaxing the integer requirements on x:

LP(P ) min{cTx | x ∈ X}, (2)

where X = {x ∈ Rn | Ax ≤ b, lj ≤ xj ≤ uj for j ∈ G ∪ C, xj ∈ [0, 1] for j ∈ B}.
Many real-world problems can be modelled as MIP problems [5, 6]. However,

a number of special cases of MIP problem are proven to be NP-hard [11] and
cannot be solved to optimality within acceptable time/space with existing exact
methods. This is why various heuristic methods have been designed in attempt to
find good near-optimal solutions of hard MIP problems. Most of them start from
a given feasible solution and try to improve it. Still, finding a feasible solution of
0-1 MIP is proven to be NP-complete [28] and for a number of instances finding
a feasible solution remains hard in practice. This calls for the development of
efficient constructive heuristics which can attain feasible solutions in short time.
Over the last decade, a number of heuristics that address the problem of MIP
feasibility have been proposed. The feasibility Pump (FP) heuristic was proposed
for the special case of pure 0-1 MIP problem in [8]. It generates a sequence of
linear programming problems, whose objective function represents the infeasibility
measure of the initial MIP problem. The solution of each subproblem is used to
define the objective function of the next subproblem, so that the infeasibility
measure is reduced in each iteration [8]. This approach was extended in [3] for
the case of general MIP problems. The FP heuristic is quite efficient in terms of
computational time, but usually provides poor-quality solutions. In [1], objective
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FP was proposed with the aim to improve the quality of the feasible solutions
obtained. However, the computational time was increased on average, compared
to the basic version of FP. Another approach, proposed in [10], applies the Local
Branching (LB) heuristic [9] to near-feasible solutions obtained from FP in order to
locate feasible solutions. LB is applied to a modified problem in which the original
objective function is replaced by an infeasibility measure taking into account a
weighted combination of the degree of violation of the single linear constraints.
This heuristic provides feasible solutions very fast, but those solutions are again
usually of poor quality since the original objective function is completely discarded.

The concept of variable fixing in order to find solutions to MIP problems was
conceived in the late 1970s and early 1980s, when the first methods of this type
were proposed [2, 26]. Subproblems are iteratively generated by fixing a certain
number of variables in the original problem according to the solution of the linear
programming relaxation of the original problem. This approach is also referred
to as a core approach, since the subproblems so obtained are sometimes called
core problems [2, 25]. The terms hard variable fixing or diving, which are used
throughout this paper, are also present in the literature (see, for example, [7]).
The critical issue in this type of methods is the way in which the variables to be
fixed are chosen. Depending on the selection strategy and the way of manipulating
the obtained subproblems, different MIP solution methods are obtained. The basic
strategy was initially proposed in [2], for solving the multidimensional knapsack
problem. A number of its successful extensions were proposed over the years. For
example, a greedy strategy for determining the core is developed in [23], whereas
in [25] the core is defined according to a chosen efficiency function. Another itera-
tive scheme, again for the 0-1 multidimensional knapsack problem, was developed
in [27]. This scheme, which is based on a dynamic fixation of the variables, uses
the search history to build up feasible solutions and to select variables for a per-
manent/temporary fixation. Variable neighbourhood search was combined with a
very large scale neighbourhood search approach to select variables for fixing (bind-
ing sets) for the general assignment problem [20, 22]. This approach was further
extended for 0-1 mixed integer programming in general [21].

With the expansion of general-purpose MIP solvers over the last decade, differ-
ent hybridisations of MIP heuristics with commercial solvers are becoming increas-
ingly popular. A number of efficient heuristics that perform some kind of variable
fixing at each node of the Branch and Bound tree in the CPLEX MIP solver have
been developed. Relaxation induced neighbourhood search (RINS) [7] fixes the
values of the variables, which are the same in the current continuous (i.e. LP) re-
laxation and in the incumbent integral solution. Besides considering the values of
variables in the current LP relaxation solution, Distance induced neighbourhood
search [12] performs a more sophisticated fixation taking into account the solution
of the LP relaxation in the root of the Branch-and-Bound tree and the counts
of occurrences of different values. Relaxation enforced neighbourhood search [4]
is an extension of RINS, which additionally performs a large-scale neighbourhood
search over the set of general integer variables by an intelligent rebounding accord-
ing to the current LP relaxation solution. In [19], variable fixation is performed
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in a variable neighbourhood decomposition search manner [15].
In this paper we propose two new diving heuristics for MIP feasibility, which

exploit the information obtained from a series of LP relaxations. Since the vari-
ables to be fixed depend on the LP relaxation values, this approach may also be
called relaxation guided diving. Relaxation guided variable neighbourhood search
was proposed in [24], but for defining the order of neighbourhoods within VNS
(where neighbourhoods are defined by soft variable fixing) rather than selecting
the variables to be hard-fixed. The first heuristic, called variable neighbourhood
diving is based on the variable neighbourhood decomposition search principle [15].
A similar approach was proposed in [19] for optimising 0-1 MIP problems starting
from a given initial MIP feasible solution. In this paper we propose a modification
of the algorithm from [19] for constructing feasible solutions of 0-1 MIP problems.
We exploit the fact that the CPLEX MIP solver can be used not only for finding
near-optimal solutions but also as a black-box for finding a first feasible solution
for a given 0-1 MIP problem. We also extend this approach for general MIP prob-
lems, so that fixation is performed on general integer variables as well. The second
heuristic, called single neighbourhood diving explores only a single neighbourhood
in each iteration. However, the size of the neighbourhood is updated dynamically
according to the solution status of the subproblem in a previous iteration. The
incumbent solution is updated in a feasibility pump manner, whereas revisiting the
same point in the search process is prohibited by keeping the list of all visited ref-
erence solutions. This list is implemented as a set of constraints in a new (dummy)
MIP problem. We show that our proposed algorithms significantly outperform the
CPLEX 12.4 MIP solver and the recent variants of the feasibility pump heuristic,
both regarding the solution quality and the computational time.

This paper is organised as follows. In Section 2, we present the necessary
notation and a brief overview of the existing approaches related to our work. A
detailed description of the two new diving heuristics for MIP feasibility is provided
in Section 3. In Section 4, we analyse the performance of the proposed methods
as compared to the commercial IBM ILOG CPLEX 12.4 MIP solver and the basic
and objective variant of the FP heuristic [1, 8]. At last, in Section 5, we give some
final remarks and conclusions.

2. Preliminaries

2.1. Notation

Given an arbitrary integer solution x0 of problem (1) and an arbitrary subset
J ⊆ B ∪ G of integer variables, the problem reduced from the original problem P
and associated with x0 and J can be defined as:

P (x0, J) min{cTx | x ∈ X,xj = x0j for j ∈ J} (3)

If C is a set of constraints, we will denote with (P | C) the problem obtained by
adding all constraints in C to the problem P .
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Let x and y be two arbitrary integer solutions of the problem P . The distance
between x and y is then defined as

∆(x, y) =
∑

j∈B∪G
|xj − yj | (4)

If J ⊆ B ∪ G, the partial distance between x and y, relative to J , is defined as
∆(J, x, y) =

∑
j∈J | xj − yj | (obviously, ∆(B ∪ G, x, y) = ∆(x, y)). The linearisa-

tion of the distance function ∆(x, y), as defined in (4), requires the introduction
of additional variables. More precisely, for any integer feasible vector y, function
∆(x, y) can be linearised as follows [9]:

∆(x, y) =
∑

j∈B∪G:yj=lj

(xj − lj) +
∑

j∈B∪G:yj=uj

(uj − xj) +
∑

j∈G:lj<yj<uj

dj , (5)

where lj = 0 and uj = 1 for j ∈ B and new variables dj = |xj − yj | need to satisfy
the following constraints :

dj ≥ xj − yj and dj ≥ yj − xj for all j ∈ {i ∈ G | li < yi < ui}. (6)

In the special case of 0-1 MIP problems, the distance function between any two
binary vectors x and y can be expressed as:

δ(x, y) =
∑
j∈B

xj(1− yj) + yj(1− xj). (7)

Furthermore, if x is a given binary vector, then formula (7) can be used to compute
the distance from x to any vector x ∈ Rn:

δ(x, x) =
∑
j∈B

xj(1− xj) + xj(1− xj).

As in the case of general MIP problems, the partial distance between x and x,
relative to J ⊆ B, is defined as δ(J, x, x) =

∑
j∈J xj(1− xj) + xj(1− xj). Note

that the distance function δ, as defined in (7), can also be used for general MIP
problems, by taking into account that δ(x, y) = ∆(B, x, y) for any two solution
vectors x and y of a general MIP problem (1).

The LP-relaxation of the modified problem, obtained from a MIP problem P ,
as defined in (1), by replacing the original objective function cTx with δ(x̃, x), for

a given integer vector x̃ ∈ {0, 1}|B| × Z|G|+ × R|C|+ , can be expressed as:

LP(P, x̃) min{δ(x̃, x) | x ∈ X} (8)

Similarly, the notation MIP(P, x̃) will be used to denote a modified problem, ob-
tained from P by replacing the original objective function with δ(x, x̃):

MIP(P, x̃) min{δ(x̃, x) | x ∈ X}. (9)
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We will also define the rounding [x] of any vector x, as vector [x] = ([x]j), with:

[x]j =

{
bxj + 0.5c, j ∈ B ∪ G
xj , j ∈ C. (10)

The neighbourhood structures {Nk | 1 ≤ kmin ≤ k ≤ kmax ≤ |B|+ |G|} can be
defined knowing the distance δ(x, y) between any two solutions x, y ∈ X. The set
of all solutions in the kth neighbourhood of x ∈ X is defined as

Nk(x) = {y ∈ X | δ(x, y) = k}. (11)

2.2. Related Work

We here present a brief survey of the methods closely related to the research
reported in this paper. We provide short descriptions of the feasibility pump
heuristic [8, 1, 3] and variable neighbourhood decomposition search for 0-1 MIP
problems [19].

Feasibility Pump. Feasibility Pump (FP), introduced in [8], is a fast and sim-
ple heuristic for finding a feasible solution to 0-1 MIP. Starting from an optimal
solution of the LP-relaxation, the FP heuristic generates two sequences of solu-
tions x and x̃, which satisfy LP-feasibility and integrality feasibility, respectively.
The two sequences of solutions are obtained as follows: at each iteration, a new
binary solution x̃ is obtained from the fractional x by simply rounding its integer-
constrained components to the nearest integer, i.e. x̃ = [x], while a new fractional
solution x is defined as an optimal solution of LP(P, x̃). To avoid cycling, some
random perturbations of the current solution x̃ are performed. In the original im-
plementation, the neighbourhood Nk(x̃), k ∈ [T/2, 3T/2] of the current solution
x̃ is chosen at random (where T is an input parameter), and x̃ is replaced with
x′ ∈ Nk(x̃), such that δ(x′, x) = maxy∈Nk(x̃) δ(y, x). The whole process is iterated
until a feasible solution is detected, or some of stopping criteria are fulfilled. The
stopping criteria usually contain a running time limit and/or the total number of
iterations. The pseudo-code of the basic FP is given in Figure 1.

The basic feasibility pump employs the distance function (7) which is defined
only on the set of binary variables. The general feasibility pump, proposed in
[3], employs the distance function (4) in which the general integer variables also
contribute to the distance. According to the computational results reported in [3,
8], the feasibility pump is usually quite effective with respect to the computational
time needed to provide the first feasible solution. However, the solution provided
is often of a poor-quality in terms of the objective value. The reason is that the
original objective function is completely discarded after solving the LP relaxation
of the original problem in order to construct the starting point for the search. In
an attempt to provide good-quality initial solutions, a modification of the basic
FP scheme, the so called objective feasibility pump was proposed in [1]. The idea of
objective FP is to include the original objective function as a part of the objective
function of the problem considered at a certain pumping cycle of FP. At each
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Procedure FP(P )
1 Set x = LPSolve(P ); Set proceed = true;
2 while (proceed) do
3 if (x is integer) then return x;
4 Set x̃ = [x];
5 if (cycle detected) then
6 Select k ∈ {1, 2, . . . , |B|+ |G|} at random;
7 Select x′ ∈ Nk(x̃);
8 Set x̃ = x′;
9 endif
10 x = LPSolve(LP(P, x̃));
11 Update proceed;
12 endwhile

Figure 1: The basic feasibility pump.

pumping cycle, the actual objective function is computed as a linear combination
of the feasibility measure and the original objective function:

∆α(x, x̃) = (1− α)∆(x, x̃) + α

√
|B ∪ G|
||c||

ctx, α ∈ [0, 1], (12)

where || · || denotes the Euclidean norm. Results reported in [1] indicate that this
approach usually yields considerably higher-quality solutions than the basic FP.
However, it generally requires much longer computational time.

Variable Neighbourhood Pump (VNP). The feasibility pump approach from
[8] and variable neighbourhood branching (VNB) from [16] were successfully com-
bined to provide a method for finding good quality solutions within a relatively
short computational time (see [13, 17]).

The VNP heuristic starts from an optimal solution x of the LP-relaxation of the
initial 0-1 MIP problem. It first performs one iteration of the FP pumping cycle
to the rounded vector [x] in order to obtain a near-feasible vector x̃. A determinis-
tic search procedure VNB(P, x̃, kmin, kstep, kmax) based on variable neighbourhood
branching [16], and adjusted for 0-1 MIP feasibility as in [13, 17], is then applied
to x̃ in an attempt to locate a feasible solution of the original problem. Procedure
VNB applies variable neighbourhood descent [14] to an initial reference solution
x̃, starting from the minimum neighbourhood size kmin, with the neighbourhood
increase step kstep, until the maximum neighbourhood size kmax is reached. The
variable neighbourhood pump algorithm is based on the observation that x̃ is usu-
ally near-feasible, and it is very likely that feasible solution vectors can be found
in small neighbourhoods of x̃. In addition, if VNB fails to detect a feasible solu-
tion due to the time or neighbourhood size limitations, a pseudo-cut is added to
the current subproblem in order to change the linear relaxation solution, and the



8 Lazić et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

process is iterated. If no feasible solution has been found, the algorithm reports
failure and returns the last integer (infeasible) solution. The VNP pseudo-code
for 0-1 MIP feasibility is given in Figure 2.

Procedure VNP(P )
1 Set proceed1 = true;
2 while (proceed1) do
3 Set x = LPSolve(P ); Set x̃ = [x]; Set proceed2 = true;
4 while (proceed2) do
5 if (x is integer) then return x;
6 x = LPSolve(LP(P, x̃));
7 if (x̃ 6= [x]) then x̃ = [x];
8 else Set proceed2 = false;
9 endif
10 endwhile
11 kmin = bδ(x̃, x)c; kmax = b(|B| − kmin)/2c; kstep = (kmax − kmin)/5;
12 x′ = VNB(P, x̃, kmin, kstep, kmax);
13 if (x′=x̃) then //VNB failed to find the feasible solution.
14 P = (P | δ(x, x) ≥ kmin); Update proceed1;
15 else return x′;
16 endif
17 endwhile
18 Output message: ”No feasible solution found.”; return x̃;

Figure 2: The variable neighbourhood pump heuristic pseudo-code.

Variable Neighbourhood Decomposition Search for 0-1 MIP problems.
Variable neighbourhood decomposition search (VNDS) is a two-level variable neigh-
bourhood search (VNS) scheme for solving optimisation problems, based upon the
decomposition of the problem [15]. Recently, a new variant of VNDS for solving
0-1 MIP problems, called VNDS-MIP, was proposed in [19]. This method com-
bines a linear programming (LP) solver, a MIP solver, and variable neighbourhood
branching [16] in order to efficiently solve a given 0-1 MIP problem. At the begin-
ning of the algorithm, the LP-relaxation LP(P ) of the original problem P is solved
in order to obtain an optimal solution x, and an initial integer feasible solution x is
generated. Then, the search for an improvement of the incumbent objective value
is performed solving a series of subproblems P (x, Jk), where subset Jk ⊆ B ∪ G
corresponds to the indices of variables with k smallest |xj − x∗j | values, and x∗

is the current incumbent solution. If the improvement occurs, VNB is performed
over the whole search space and the process is iterated. The pseudo-code of the
VNDS-MIP method can be found in [19].
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3. New Diving Heuristics for MIP Feasibility

The new diving heuristics presented in this section are based on the systematic
hard variable fixing (diving) process, according to the information obtained from
the linear relaxation solution of the problem. They rely on the observation that
a general-purpose MIP solver can be used not only for finding (near) optimal
solutions of a given input problem, but also for finding the initial feasible solution.
For the sake of simplicity, in Subsections 3.1 and 3.2 we will first present both
algorithms for the special case of 0-1 MIP problems. Then, in Subsection 3.3,
we explain how the presented algorithms can be adapted for solving general MIP
problems.

3.1. Variable Neighbourhood Diving

The variable neighbourhood (VN) diving algorithm begins by obtaining the LP-
relaxation solution x of the original problem P and generating an initial integer
(not necessarily feasible) solution x̃ = [x] by rounding the LP-solution x. If the op-
timal solution x is integer feasible for P , we stop and return x. At each iteration of
the VN diving procedure, we compute the distances δj =| x̃j−xj | from the current
integer solution values (x̃j)j∈B to the corresponding LP-relaxation solution values
(xj)j∈B and index the variables x̃j , j ∈ B so that δ1 ≤ δ2 ≤ . . . ≤ δ|B|). Then,
we successively solve the subproblems P (x̃, {1, . . . , k}) obtained from the original
problem P , where the first k variables are fixed to their values in the current in-
cumbent solution x̃. If a feasible solution is found by solving P (x̃, {1, . . . , k}), it is
returned as a feasible solution of the original problem P . Otherwise, a pseudo-cut
δ({1, . . . , k}, x̃, x) ≥ 1 is added in order to avoid exploring the search space of
P (x̃, {1, . . . , k}) again, and the next subproblem is examined. If no feasible solu-
tion is detected after solving all subproblems P (x̃, {1, . . . , k}), kmin ≤ k ≤ kmax,
kmin = kstep, kmax = |B| − kstep, the linear relaxation of the current problem P ,
which includes all the pseudo-cuts added during the search process, is solved and
the process is iterated. If no feasible solution has been found due to the fulfil-
ment of the stopping criteria, the algorithm reports failure and returns the last
(infeasible) integer solution.

The pseudo-code of the proposed VN diving heuristic is given in Figure 3.
The input parameters for the VN diving algorithm are the input MIP prob-
lem P and the parameter d, which controls the change of neighbourhood size
during the search process. In all pseudo-codes, a statement of the form y =
FindFirstFeasible(P, t) denotes a call to a generic MIP solver, an attempt to
find a first feasible solution of an input problem P within a given time limit t. If
a feasible solution is found, it is assigned to the variable y, otherwise y retains its
previous value.

Since the VN diving procedure examines only a finite number of subproblems,
it is easy to prove the following proposition.
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VN-Diving(P, d)
1 Set proceed1 = true, proceed2 = true; Set timeLimit for subproblems;
3 while (proceed1) do
4 x = LPSolve(P ); x̃ = [x];
5 if (x = x̃) then return x̃;
6 δj =| x̃j − xj |; index xj so that δj ≤ δj+1, j = 1, . . . , |B| − 1;
7 Set nd =| {j ∈ B | δj 6= 0} |, kstep = [nd/d], k = |B| − kstep;
8 while (proceed2 and k ≥ 0) do
9 Jk = {1, . . . , k}; x′ = FindFirstFeasible(P (x̃, Jk), timeLimit);

10 if (P (x̃, Jk) is proven infeasible) then
11 P = (P | δ(Jk, x̃, x) ≥ 1);
12 if (x′ is feasible) then return x′;
13 if (k − kstep > |B| − nd) then kstep = max{[k/2], 1};
14 Set k = k − kstep;
15 Update proceed2;
16 endwhile
17 Update proceed1;
18 endwhile
19 Output message: ”No feasible solution found”; return x̃;

Figure 3: Variable neighbourhood diving for 0-1 MIP feasibility.

Proposition 1. If the timeLimit parameter is set to infinity, the variable neigh-
bourhood diving algorithm finishes in a finite number of iterations and either re-
turns a feasible solution of the input problem, or proves the infeasibility of the
input problem.

Note however that, in the worst case, the last subproblem examined by VN diving
is the original input problem. Therefore, the result of Proposition 1 does not have
any theoretical significance.

3.2. Single Neighbourhood Diving

In the case of variable neighbourhood diving, a set of subproblems P (x̃, Jk), for
different values of k, is examined in each iteration until a feasible solution is found.
In the single neighbourhood diving procedure, we only examine one subproblem
P (x̃, Jk) in each iteration (a single neighbourhood, see Figure 4). However, because
only a single neighbourhood is examined, additional diversification mechanisms are
required. This diversification is provided through keeping the list of constraints
which ensures that the same reference integer solution x̃ cannot occur more than
once (i.e. in more than one iteration) in the solution process. An additional MIP
problem Q is introduced to store these constraints. In the beginning of the algo-
rithm, Q is initialised as an empty problem (see line 4 in Figure 4). Then, in each
iteration, if the current reference solution x̃ is not feasible (see line 8 in Figure 4),
constraint δ(x̃, x) ≥ dδ(x̃, x)e is added to Q (line 9). This guarantees that future
reference solutions can not be the same as the current one, since the next refer-
ence solution is obtained by solving the problem MIP(Q, [x]) (see line 17), which
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contains all constraints from Q, (see definition (9)). The variables to be fixed in
the current subproblem are chosen among those which have the same value as in
the linear relaxation solution of the modified problem LP(P, x̃), where x̃ is the
current reference integer solution (see lines 7 and 10). The number of variables
to be fixed is controlled by the parameter α (line 10). After initialisation (line
5), the value of α is updated in each iteration, depending on the solution status
returned from the MIP solver. If the current subproblem is proven infeasible, the
value of α is increased in order to reduce the number of fixed variables in the next
iteration (see line 16), and thus provide better diversification. Otherwise, if the
time limit allowed for subproblem is exceeded without reaching a feasible solution
or proving the subproblem infeasibility, the value of α is decreased. Decreasing the
value of α, increases the number of fixed variables in the next iteration (see line
17), and thus reduces the size of the next subproblem. In the feasibility pump, the
next reference integer solution is obtained by simply rounding the linear relaxation
solution x of the modified problem LP(P, x̃). However, if [x] is equal to some of
the previous reference solutions, the solution process is caught in a cycle. In order
to avoid this type of cycling, we determine the next reference solution as the one
which is at the minimum distance from [x] (with respect to binary variables) and
satisfies all constraints from the current subproblem Q (see line 19). This way
we guarantee the convergence of the variable neighbourhood diving algorithm, as
stated in the following proposition.

Proposition 2. If the timeLimit parameter is set to infinity, the single neigh-
bourhood diving algorithm finishes in a finite number of iterations and either re-
turns a feasible solution of the input problem, or proves the infeasibility of the
input problem.

Proof. Let x̃i be the reference solution at the beginning of the ith iteration, ob-
tained by solving the MIP problem MIP(Qi, [x]) and let j ≥ i + 1. The problem
Qj contains all constraints from Qi+1. If the algorithm has reached the jth iter-
ation, it means that in the ith iteration feasible solution was not found and cut
δ(x̃i, x) ≥ dδ(x̃i, x)e (line 9 in Figure 4) was added to Qi+1. Hence, the problem
MIP(Qj , [x]) contains δ(x̃i, x) ≥ dδ(x̃i, x)e. Furthermore, because dδ(x̃i, x)e > 0
(otherwise, x̃i would be feasible and the algorithm would stop in the ith itera-
tion), this implies that x̃i(B) 6= x̃j(B). Since this reasoning holds for any two
iterations j > i ≥ 0, the total number of iterations of the single neighbourhood
diving algorithm is limited by the number of possible sub vectors x̃i(B), which
is 2|B|. Therefore, the single neighbourhood diving algorithm finishes in a finite
number of iterations.

The single neighbourhood diving algorithm can only return a solution vector
as a result if either dδ(x̃i, x)e = 0, therefore x̃i being feasible for P , or if a feasible
solution of the reduced problem P (x̃i, Jk) is found. Since a feasible solution of
P (x̃i, Jk) is also feasible for P , this means that any solution vector returned by
single neighbourhood diving algorithm must be feasible for P .

Finally, we will prove that any feasible solution of P has to be feasible for Qi,
for any iteration i ≥ 0. Moreover, we will prove that any feasible solution of P has



12 Lazić et al. / Variable and Single Neighbourhood Diving for MIP Feasibility

Procedure SN-Diving(P )
1 Set x = LPSolve(P );
2 Set i = 0; Set x̃0 = [x];
3 if (x = x̃0) then return x̃0;
4 Set Q0 = ∅;
5 Set proceed = true; Set timeLimit for subproblems; Set value of α;
6 while (proceed) do
7 x = LPSolve(LP(P, x̃i));
8 if (dδ(x̃i, x)e = 0) then return x̃i;
9 Qi+1 = (Qi | δ(x̃i, x) ≥ dδ(x̃i, x)e);

10 k =| {j ∈ B : x̃ij = xj} | /α; Jk = {1, . . . , k};
11 x′ = FindFirstFeasible(P (x̃i, Jk), timeLimit);
12 if (feasible solution found) then
13 return x′;
14 if (P (x̃i, Jk) is proven infeasible) then
15 Qi+1 = (Qi+1 | δ(Jk, x̃i, x) ≥ 1); P = (P | δ(Jk, x̃i, x) ≥ 1);
16 α = 3α/2;
17 else if (time limit for subproblem exceeded)
18 α = max(1, α/2);
19 x̃i+1 = FindFirstFeasible(MIP(Qi+1, [x]), timeLimit);
20 if (MIP(Qi+1, [x]) is proven infeasible) then
21 Output message: “Problem P is proven infeasible”; return;
22 i = i+ 1;
23 endwhile

Figure 4: Single neighbourhood diving for 0-1 MIP feasibility.

to satisfy all constraints in Qi, for any iteration i ≥ 0. Since Q0 does not contain
any constraints, this statement is obviously true for i = 0. Let us assume that the
statement is true for some i ≥ 0, i.e. that for some i ≥ 0 every feasible solution of
P satisfies all constraints in Qi. The problem Qi+1 is obtained from Qi by adding
constraints δ(x̃i, x) ≥ dδ(x̃i, x)e and δ(Jk, x̃

i, x) ≥ 1. According to the definition
of dδ(x̃i, x)e, there cannot be any feasible solution of P satisfying the constraint
δ(x̃i, x) < dδ(x̃i, x)e. In other words, all feasible solutions of P must satisfy the
constraint δ(x̃i, x) ≥ dδ(x̃i, x)e. Furthermore, if the constraint δ(Jk, x̃

i, x) ≥ 1) is
added to Qi+1, this means that the problem P (x̃i, Jk) = (P | δ(Jk, x̃i, x) = 0) is
proven infeasible, and therefore no feasible solution of P can satisfy the constraint
δ(Jk, x̃

i, x) = 0. Therefore, any feasible solution of P satisfies the constraints
added to Qi in order to obtain Qi+1 and hence any feasible solution of P satisfies
all constraints in Qi+1. This proves that any feasible solution of P satisfies all
constraints in Qi, for any i ≥ 0. In other words, any feasible solution of P is
feasible for Qi, for any i ≥ 0. Since MIP(Qi+1, [x]) has the same set of constraints
as Qi, this means that any feasible solution of P is feasible for MIP(Qi, [x]). As a
consequence, if MIP(Qi, [x]) is proven infeasible for some i ≥ 0, this implies that
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the original problem P is infeasible. �

3.3. Extension to a General MIP Case

Obviously, fixing a certain number of variables can be performed for general
MIP problems, as well as for 0-1 MIP problems. We here explain how the previ-
ously presented algorithms can be adapted and employed for solving the general
MIP problems. In the case of VN diving, we compute the distances ∆j =| x̃j−xj |,
j ∈ B ∪ G, for all integer variables (not just the binaries). Then, we successively
solve subproblems P (x̃, Jk), Jk = {1, . . . , k}, k =| {j ∈ B∪G : x̃j = xj} |, where x̃
is the current reference integer solution and x is the solution of the LP relaxation of
the original problem LP(P ). If a feasible solution is found by solving P (x̃, Jk), for
some k, 0 ≤ k ≤ |B∪G|, it is returned as a feasible solution of the original problem
P . In the VN diving variant for 0-1 MIP problems, a pseudo-cut is added to P if
a subproblem P (x̃, Jk) is proven infeasible. In the case of general MIP problems
however, generating an appropriate pseudo-cut would require operating with ex-
tended problems, which contain significantly more variables and constraints than
the original problem P . More precisely, the input problem would have to contain
additional variables dj , j ∈ G, and additional constraints (see definition (5)):

uj − dj ≤ xj ≤ dj + lj for all j ∈ {i ∈ G | li < yi < ui}.

Consequently, all subproblems derived from the so extended input problem would
have to contain these additional variables and constraints. In order to save the
memory consumption and computational time for solving subproblems, we there-
fore decide not to add any pseudo-cuts in the VN diving variant for general MIP
problems, although that implies possible repetitions in the search space explo-
ration. This means that we only perform decomposition with respect to the LP
relaxation solution of the initial problem. In this aspect, VN diving for general
MIP problems is similar to the VNDS algorithm for 0-1 MIP problems from [19].

In order to avoid memory and time consumption when dealing with large prob-
lems, the implementation of the SN diving algorithm for general MIP problems
is the same as for 0-1 MIP problems. In other words, all distance values are
computed with respect to the distance function δ (which takes into account only
binary variables), and general integer variables are handled by the generic MIP
solver itself.

4. Computational Results

In this section we present the computational results for single and variable
neighbourhood diving algorithms. We compare our proposed methods with the
following existing methods CPLEX MIP solver without feasibility pump (CPLEX for
short), the standard feasibility pump heuristic (standard FP), the objective fea-
sibility pump (Objective FP) and the variable neighbourhood pump (VNP). Since
the feasibility pump is already included as a primal heuristic in the employed
version of the CPLEX MIP solver, we use the appropriate parameter settings to
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control the use of FP and to chose the version of FP. All results reported are
obtained on a computer with a 4.5GHz Intel Core i7-2700K Quad-Core proces-
sor and 32GB RAM, using the general purpose MIP solver IBM ILOG CPLEX
12.4. Both algorithms were implemented in C++ and compiled within Microsoft
Visual Studio 2010. For comparison purposes, we consider 83 0-1 MIP instances
[8]) previously used for testing the performance of the basic FP (see Table 1 and
34 general MIP instances previously used in [3] (see Table 2). In Tables 1and2,
columns denoted by n represent the total number of variables, whereas columns
denoted by |B| and m show the number of binary variables and the number of con-
straints, respectively. Additionally, the column denoted by |G| in Table 2 provides
the number of general integer variables for a given instance.

In both proposed diving heuristics, the CPLEX MIP solver is used as a black-
box for solving subproblems to feasibility. For this special purpose, the parameter
CPX PARAM MIP EMPHASIS is set to FEASIBILITY, the parameter CPX PARAM INTSOLLIM

is set to 1 and the parameter CPX PARAM FPHEUR was set to -1. All other pa-
rameters are set to their default values, unless otherwise specified. Results for
the CPLEX MIP solver without FP were obtained by setting the parameter
CPX PARAM FPHEUR to -1. The feasibility pump heuristics are tested through the
calls to the CPLEX MIP solver with the settings CPX PARAM FPHEUR=1 for stan-
dard FP and CPX PARAM FPHEUR=2 for objective FP. All tested methods (CPLEX
MIP without FP, standard FP, objective FP and both proposed diving heuristics)
were allowed 100 seconds of total running time on 0-1 MIP test instances, while
on General MIP instances maximum running time, for all methods, was set to
150 seconds. In addition, the time limit for solving subproblems within variable
neighbourhood diving and single neighbourhood diving was set to 10 seconds for
all instances.

The value of the neighbourhood change control parameter d in the VN diving
algorithm (see Figure 3) is set to 10, meaning that, in each iteration of VN diving,
10+b1 + log2 |xj ∈ {0, 1} : j ∈ B|c subproblems (i.e. neighbourhoods) are explored,
where x is the LP relaxation solution of the current problem. The neighbourhood
size control parameter α in the SN diving algorithm (see Figure 4) is set to 2.5,
meaning that 1

2.5 × 100 = 40 percent of the variables with integer values in x are
initially fixed to those values to obtain the first subproblem. Those values of d
and α are based on brief experimental analysis.
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No. Instance n |B| m No. Instance n |B| m
name name

1 10teams 2025 1800 230 43 bg512142 792 240 1307
2 aflow30a 842 421 479 44 dg012142 2080 640 6310
3 aflow40b 2728 1364 1442 45 blp-ar98 16021 15806 1128
4 air04 8904 8904 823 46 blp-ic97 9845 9753 923
5 air05 7195 7195 426 47 blp-ic98 13640 13550 717
6 cap6000 6000 6000 2176 48 blp-ir98 6097 6031 486
7 dano3mip 13873 552 3202 49 CMS750 4 11697 7196 16381
8 danoint 521 56 664 50 berlin 5 8 0 1083 794 1532
9 ds 67732 67732 656 51 railway 8 1 0 1796 1177 2527

10 fast0507 63009 63009 507 52 glass4 322 302 396
11 fiber 1298 1254 363 53 net12 14115 1603 14021
12 fixnet6 878 378 478 54 nsrand ipx 6621 6620 735
13 harp2 2993 2993 112 55 tr12-30 1080 360 750
14 liu 1156 1089 2178 56 van 12481 192 27331
15 markshare1 62 50 6 57 biella1 7328 6110 1203
16 markshare2 74 60 7 58 NSR8K 38356 32040 6284
17 mas74 151 150 13 59 rail507 63019 63009 509
18 mas76 151 150 12 60 rail2536c 15293 15284 2539
19 misc07 260 259 212 61 rail2586c 13226 13215 2589
20 mkc 5325 5323 3411 62 rail4284c 21714 21705 4284
21 mod011 10958 96 4480 63 rail4872c 24656 24645 4875
22 modglob 422 98 291 64 A1C1S1 3648 192 3312
23 momentum1 5174 2349 42680 65 A2C1S1 3648 192 3312
24 nw04 87482 87482 36 66 B1C1S1 3872 288 3904
25 opt1217 769 768 64 67 B2C1S1 3872 288 3904
26 p2756 2756 2756 755 68 sp97ar 14101 14101 1761
27 pk1 86 55 45 69 sp97ic 12497 12497 1033
28 pp08a 240 64 136 70 sp98ar 15085 15085 1435
29 pp08aCUTS 240 64 246 71 sp98ic 10894 10894 825
30 protfold 1835 1835 2112 72 usAbbrv.8.25 70 2312 1681 3291
31 qiu 840 48 1192 73 manpower1 10565 10564 25199
32 rd-rplusc-21 622 457 125899 74 manpower2 10009 10008 23881
33 set1ch 712 240 492 75 manpower3 10009 10008 23915
34 seymour 1372 1372 4944 76 manpower3a 10009 10008 23865
35 swath 6805 6724 884 77 manpower4 10009 10008 23914
36 t1717 73885 73885 551 78 manpower4a 10009 10008 23866
37 vpm2 378 168 234 79 ljb2 771 681 1482
38 dc1c 10039 8380 1649 80 ljb7 4163 3920 8133
39 dc1l 37297 35638 1653 81 ljb9 4721 4460 9231
40 dolom1 11612 9720 1803 82 ljb10 5496 5196 10742
41 siena1 13741 11775 2220 83 ljb12 4913 4633 9596
42 trento1 7687 6415 1265 .

Table 1: Benchmark instances for 0-1 MIP.
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No. Instance n |B| |G| m
name

1 arki001 1388 415 123 1048
2 atlanta-ip 48738 46667 106 21732
3 gesa2 1224 240 168 1392
4 gesa2-o 1224 384 336 1248
5 ic97 potential 728 450 73 1046
6 ic97 tension 703 176 4 319
7 icir97 potential 2112 1235 422 3314
8 icir97 tension 2494 262 573 1203
9 manna81 3321 18 3303 6480

10 momentum2 3732 1808 1 24237
11 momentum3 13532 6598 1 56822
12 msc98-ip 21143 20237 53 15850
13 mzzv11 10240 9989 251 9499
14 mzzv42z 11717 11482 235 10460
15 neos7 1556 434 20 1994
16 neos8 23228 23224 4 46324
17 neos10 23489 23484 5 46793
18 neos16 377 336 41 1018
19 noswot 128 75 25 182
20 rococoB10-011000 4456 4320 136 1667
21 rococoB10-011001 4456 4320 136 1677
22 rococoB11-010000 12376 12210 166 3792
23 rococoB11-110001 12431 12265 166 8148
24 rococoB12-111111 9109 8910 199 8978
25 rococoC10-001000 3117 2993 124 1293
26 rococoC10-100001 5864 5740 124 7596
27 rococoC11-010100 12321 12155 166 4010
28 rococoC11-011100 6491 6325 166 2367
29 rococoC12-100000 17299 17112 187 21550
30 rococoC12-111100 8619 8432 187 10842
31 rout 556 300 15 291
32 timtab1 397 64 107 171
33 timtab2 675 113 181 294
34 roll3000 1166 246 492 2295

Table 2: Benchmark instances for general MIP.
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CPLEX Standard FP Objective FP VNP VN Diving SN Diving
Solution quality
Instances solved 83 83 83 82 83 83

Avg. gap from LP relaxation obj. w.r.t. all instances (%) 49665.28 49666.96 49649.94 - 6620.55 17890.24
Avg. gap from LP relaxation obj. w.r.t. 82 instances solved by VNP (%) 48002.46 48029.48 48003.82 4683.57 4542.36 16086.52

Number of wins 18 15 17 32 44 17
Computational time

Average w.r.t. all instances(sec) 4.05 3.85 4.29 7.14 5.09 6.63
Average w.r.t. 82 instances solved by VNP 3.74 3.45 3.79 6.01 4.83 6.65

Number of wins 42 50 48 2 8 19

Table 5: Summarised results for 0-1 MIP instances.

The results obtained by all 6 solvers, for the first 83 benchmark 0-1 MIP
instances, which was first used in [8], are presented in Tables 3 and 4. Table 3
provides the objective values obtained by all 6 methods and Table 4 provides
the corresponding execution time. The summarized results for this benchmark,
including the variable neighbourhood pump heuristic [13, 17], are presented in
Table 5. In the solution quality block of Table 5, we provide the number of
instances solved by each of the 6 methods, the average percentage gap from the
LP relaxation objective value regarding all 83 instances, the average percentage
gap from the LP relaxation objective value regarding the instances solved by VNP,
and the number of times that each of the methods managed to obtain the best
objective value among the others (including ties). For each method, a percentage
gap for a particular instance was computed according to the formula f−fLP

|fLP | ×100,

where f is the objective function value for the observed instance obtained by
that method, and fLP is the objective function value of the LP relaxation of
the observed instance. The exceptions are instances markshare1, markshare2

and mod011, for which the gap value was computed as (f − fLP ) × 100, since
the LP relaxation objective value is equal to 0 for all three instances. In the
computational time block of the Table 5, we provide the average computational
time over all instances in the benchmark for each of the 6 methods compared,
the average computational time over all instances solved by VNP, as well as the
number of times that each of the methods managed to obtain a solution in shortest
time.
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Lazić et al. / Variable and Single Neighbourhood Diving for MIP Feasibility 21

From Tables 3 and 5, we can see that all methods except VNP are able to
solve all 83 instances. VNP does not manage to solve just one test instance.
Therefore, the comparison of performances of CPLEX MIP solver, standard FP,
objective FP, VN diving and SN diving has been done regarding all 83 instances,
while the performances of VNP has been evaluated relatively to the performances
of the previous five methods regarding 82 instances solved by VNP. It appears
that VN diving clearly outperforms all other methods regarding the solution qual-
ity. Indeed, it manages to solve all 83 instances from the benchmark and has the
smallest average gap (6620.55%) from the LP relaxation objective. In addition,
VN diving provides the best objective values among all 6 methods in 44 out of 83
instances That is much more than number of times that VNP (32 times), CPLEX
MIP solver(18 times), objective FP(17 times) or standard FP(17 time) succeeds
to reach best objective value. The second best among methods able to solve all 83
instances is SN diving with an average gap from the LP relaxation of 17890.24%.
It is followed by objective FP (49649.94%), standard FP (49666.96 %) and CPLEX
MIP solver (49665.28 %). On the other hand, regarding 82 instances solved by
VNP, VNP has much smaller average gap from LP relaxation objective (4683.57%)
in comparison with SN diving (16086.52%), CPLEX MIP solver(48002.46%), ob-
jective FP (48003.82 %)and standard FP (48029.48 %). However with respect to
the average gap from LP relaxation objective, VNP is the second best method.
Its average gap is slightly greater than the average gap of VN diving whose gap is
4542.36%.

From Tables 4 and 5, we can observe that the shortest average computational
time of 3.85s is reported by standard FP, whereas objective FP and CPLEX MIP
solver are only slightly slower with the average computational time of 4.29s and
4.05s, respectively. They are followed by VN diving, whose average computational
time is 5.09s, whereas SN diving and VNP are the slowest, with 6.63s and 7.14s
average computational time, respectively. Note, that in computation of average
computational time of VNP, we include the time of its failed run. Also, note that on
one instance (i.e., ds), we allowed to SNdiving more than 100s of computational
time and counted that run as successful. However, if we consider the average
computational time of all six methods over all instances solved successfully by
each of them (82 instances solved by VNP), the ranking of methods is almost
unchanged besides that VNP is now faster than SN diving. Regarding the number
of wins, the objective FP, the standard FP, and the CPLEX MIP manage to obtain
a solution in the shortest time most often, in 50, 48 and 42 cases, respectively. The
SN diving and VN diving follow, obtaining a solution in the shortest time in 19,
and 8 cases, respectively. The VNP has the worst performance in this respect,
since it finds a solution before other methods in just two cases.

The objective function values and the corresponding execution time for the
second benchmark of 34 general MIP instances [3] are presented in Table 6. Sum-
marised results for this benchmark are presented in Table 7. For each method, a
percentage gap for a particular instance was computed according to the formula

f − fLP
|fLP |

× 100,
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CPLEX Standard FP Objective FP VNP VN Diving SN Diving
Solution quality
Instances solved 34 34 34 31 34 34

Avg. gap from LP relaxation obj. w.r.t all instances(%) 403.44 454.18 407.46 - 383.28 381.08
Avg. gap from LP relaxation obj. w.r.t instances solved by VNP(%) 437.31 492.95 441.72 431.42 413.00 406.69

Number of wins 5 3 4 9 17 7
Computational time

Average w.r.t all instances(sec) 9.58 9.25 9.02 19.14 9.98 2.92
Average w.r.t instances solved by VNP(sec) 2.72 2.29 1.99 6.47 4.62 2.09

Number of wins 5 7 10 1 9 14

Table 7: Summarised results for general MIP instances.

where f is the objective function value for the observed instance obtained by
that method, and fLP is the objective function value of the LP relaxation of the
observed instance. Note that for this benchmark set, there is no exception to this
rule since there is no instance whose LP objectives is equal to 0.

From Tables 6 and 7, we can see that again only the VNP is not able to solve all
34 instances. Therefore, the comparison of performances of CPLEX without FP,
standard FP, objective FP, VN diving, and SN diving has been done in the same
way as for the previous benchmark set. From Tables 3 and 5, we conclude that
VN diving and SN diving have best performances regarding the solution quality.
The SN diving heuristic achieves the smallest average gap from the LP objective
(381.08%) and obtains the best objective among all 6 methods in 7 cases. The VN
diving has a slightly worse average gap of 383.28%, but obtains the best objective
among all methods in 17 cases. If we take into account the average computational
time of these two methods, we may conclude that SN diving is the best method for
the general MIP problem. The third best method appears to be the CPLEX MIP
solver without FP, with 403.44% average LP relaxation gap and 5 wins, followed by
objective FP with 407.46% average gap and 4 wins. The standard FP heuristics
have a significantly higher gap from the LP relaxation (454.18% ) and only 3
objective wins, indicating that FP is the worst choice quality-wise for the general
MIP benchmark. Moreover, the ranking of CPLEX without FP, standard FP,
objective FP, VN diving, and SN diving regarding solution quality on instances
solved by VNP is the same. However, on these instances, VNP manifests much
better behavior than CPLEX without FP, standard FP, objective FP regarding the
average gap from the LP value. Additionally, VNP has 9 objective wins, indicating
that VNP is the second best method, after VN diving, regarding the number of
wins.

From Tables 6 and 7, we can see that SN diving achieves the impressive average
execution time of 2.92s. The next method, according to the average execution time,
is the objective FP heuristic which is more than three times slower, with average
computational time of 9.02s. It is followed by standard FP with 9.25s average time,
the CPLEX MIP solver without FP with 9.58s average time, VN diving( 9.98s),
and finally the VNP heuristic, which is the slowest method with 19.14s average
computational time. Moreover, the ranking of methods remains the same even
in case that the average computational times are computed regarding instances
solved by VNP. Regarding number of wins, the SN diving manages to obtain a
solution in the shortest time in 14 cases. The objective FP, VN diving, standard
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FP, and CPLEX MIP solver follow by obtaining a solution in the shortest time
in 10, 9, 7, 5 cases, respectively. The VNP has the worst performance, since it
manages to find a solution before other methods in just one case.

According to the experimental analysis above, our two proposed diving heuris-
tics generally provide solutions of a better quality than the CPLEX MIP solver and
the two FP heuristics, within a similar or shorter computational time. Although
the VNP heuristic proves to be highly competitive for the 0-1 MIP benchmark,
it shows a rather poor performance for the general MIP benchmark. We may
therefore claim that, in overall, VN diving heuristic and SN diving outperform all
four state-of-the-art solvers which were used for comparison purposes regarding
solution quality. Additionally, we may claim that SN diving significantly outper-
forms all tested methods regarding average computational time needed to provide
a feasible solution for the instances from General MIP benchmark.

4.1. Influence of the time limit on the performances of all six methods

In this section we check the imposed time limit influence on the number of
solved instances by each method. The results are given in Table 8 and Figure
5 for 0-1 MIP instances, and Table 6 and Figure 6 for General MIP benchmark
instances.

Time limit CPLEX Standard FP Objective FP VNP VN Diving SN Diving
(s)

1 67 67 67 40 43 54
5 74 74 73 58 58 70

10 76 77 76 66 67 77
20 78 79 78 78 78 80
30 80 79 78 79 81 82
40 80 80 79 80 82 82
50 81 81 81 81 82 82
60 82 81 82 81 82 82
70 82 82 82 81 82 82
80 82 82 82 81 83 82
90 82 82 82 81 83 82

100 83 83 83 82 83 82

Table 8: Number of solved instances by 6 methods as a function of time limit - 0-1 MIP

It appears that CPLEX MIP solver, standard FP, and objective FP perform
better if the time limit is less than 10s. However, increasing the time limit, the
number of solved instances by the other methods grows dramatically. Conse-
quently, when the time limit is set to 20 seconds, SN diving becomes the method
with the most solved instances, keeping the first place until time limit is extended
to 80 seconds, when VN diving becomes the best method able to solve all instances.

From Table 9 and Figure 6, we conclude that CPLEX MIP solver, standard
FP, objective FP, and SN diving are able to find a feasible solution within 1
second. The CPLEX MIP solver and objective FP manage to solve 24 instances
out of 34 within 1 second, while standard FP and SN diving succeed to get 23
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Figure 5: Number of solved instances by 6 methods as a function of time limit - 0-1 MIP

Time limit CPLEX Standard FP Objective FP VNP VN Diving SN Diving
(s)

1 24 23 24 12 17 23
5 29 28 29 22 22 30

10 29 29 29 25 23 31
20 30 30 30 27 31 33
30 30 30 30 29 31 34
40 31 32 32 30 32 34
50 31 32 32 30 33 34
60 32 32 32 31 33 34
70 32 32 32 31 33 34
80 32 32 32 31 33 34
90 33 33 33 31 33 34

100 33 33 33 31 33 34
110 33 33 33 31 33 34
120 33 33 33 31 33 34
130 34 34 34 31 33 34
140 34 34 34 31 34 34
150 34 34 34 31 34 34

Table 9: Number of solved instances by 6 methods as a function of time limit - General MIP

Figure 6: Number of solved instances by 6 methods as a function of time limit - General MIP
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out of 34 instances in less than 1 second. Furthermore, it appears that SN diving
outperforms all other methods if the time limits is greater than 1s. Moreover, SN
diving solves all instances when the time limit is adjusted to 30 seconds; that is
the smallest time limit that one method needs to solve all instances. Taking into
account our previous observations, one can conclude that SN diving is the best
heuristic for finding initial feasible solution for general MIP instances.

5. Conclusion

In this paper we propose two new heuristics for finding initial feasible solu-
tions of mixed integer programs (MIPs). The proposed heuristics, called variable
neighbourhood diving (VN diving) and single neighbourhood diving (SN diving),
perform systematic hard variable fixing (i.e. diving) in order to generate smaller
subproblems whose feasible solution (if one exists) is also feasible for the original
problem. In VN diving, this fixation is performed according to the rules of variable
neighbourhood decomposition search (VNDS) [15]. This means that a number of
subproblems (neighbourhoods) generated in a VNDS manner are explored in each
iteration. Also, pseudo-cuts are added during the search process in order to pre-
vent exploration of already visited search space areas. However, a feasible solution
is usually obtained in the first iteration. In SN diving, only one neighbourhood
is explored in each iteration. However, we introduce a new mechanism to avoid
the already visited solutions. It consists of memorising a set of constraints in a
new MIP problem, which is then solved instead of the original problem in order
to obtain the new reference solution. Our experiments show that this mechanism
generally provides much better diversification than the addition of pseudo-cuts
alone. Moreover, we have proved that the SN diving algorithm converges to a
feasible solution, if one exists, or proves the infeasibility in a finite number of it-
erations. Both methods use the generic CPLEX MIP solver as a black-box for
tackling the subproblems generated during the search.

The proposed heuristics are tested on two established sets of benchmark in-
stances, proven to be difficult: the set first contains 83 0-1 MIP instances [8], and
the second contains 34 general MIP instances [3]. We compare our heuristics with
the IBM ILOG CPLEX 12.4 MIP solver, the two variants of the feasibility pump
(FP) heuristic (standard FP and objective FP), and the variable neighbourhood
pump (VNP) heuristic [13, 17, 18]. According to an extensive experimental anal-
ysis, both VN and SN diving clearly outperform the CPLEX MIP solver and the
two FP heuristics regarding the solution quality, within a similar or shorter com-
putational time. Additionally, on the instances from General MIP benchmark, SN
diving performs better than any other method tested in this paper, regarding not
only solution quality but also the time needed to find a feasible solution. The re-
sults reported in this paper are also competitive with those obtained by the recent
variable neighbourhood pump heuristic and its extensions [13, 17, 18]. Besides
improving the basic variable neighbourhood pump, our future work may consist
of designing a multi-objective VNS heuristic, which would tackle both infeasibility
and original objective quality during the search process.
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[16] Hansen, P., Mladenović, N., and Urošević, D. Variable neighborhood search and local
branching. Computers & OR 33, 10 (2006), 3034–3045.
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