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A Lyapunov-like Characterization of Predefined-Time Stability

Esteban Jiménez-Rodrı́guez, Aldo Jonathan Muñoz-Vázquez, Juan Diego Sánchez-Torres,
Michael Defoort and Alexander G. Loukianov

Abstract— This technical note studies Lyapunov-like conditions
to ensure a class of dynamical systems to exhibit predefined-
time stability. The origin of a dynamical system is predefined-
time stable if it is fixed-time stable and an upper bound of
the settling-time function can be arbitrarily chosen a priori
through a suitable selection of the system parameters. We show
that the studied Lyapunov-like conditions allow to demonstrate
equivalence between previous Lyapunov theorems for predefined-
time stability for autonomous systems. Moreover, the obtained
Lyapunov-like theorem is extended for analyzing the property
of predefined-time ultimate boundedness with predefined bound,
which is useful when analyzing uncertain dynamical systems.
Therefore, the proposed results constitute a general framework
for analyzing predefined-time stability, and they also unify a
broad class of systems which present the predefined-time stability
property. On the other hand, the proposed framework is used to
design robust controllers for affine control systems, which induce
predefined-time stability (predefined-time ultimate boundedness
of the solutions) w.r.t. to some desired manifold. A simulation
example is presented to show the behavior of a developed
controller, especially regarding the settling time estimation.

Index Terms— Nonlinear control systems, Predefined-

time stability, Sliding mode control, Stability of nonlinear

systems.

I. INTRODUCTION

The development of control, observation, and optimization

algorithms for many industrial applications requires the fulfillment of

certain time-response constraints in order to comply with a certain

quality or safety standards. To deal with these requirements, several

developments concerning the finite-time stability concept have been

carried out in [1]–[5]. Nevertheless, the finite settling time provided

by finite-time convergent algorithms is usually an unbounded function

of the system’s initial conditions. This concern gives rise to a stronger

form of stability called fixed-time stability, where the settling-time

function is bounded. The notion of fixed-time stability has been

investigated in [6]–[8].

Although the concept of fixed-time stability represents a significant

advantage over the concept of finite-time stability because of the

boundedness of the settling time, it cannot be guaranteed in general

that the convergence time can be arbitrarily selected through the

system tunable parameters. To overcome this mentioned drawback,

it is necessary to consider another class of dynamical systems that

exhibit the property of predefined-time stability, which has been

studied in [9], [10]. For these systems, an upper bound of the
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settling-time function can be arbitrarily chosen through an appropriate

selection of the system parameters.

On the other hand, Lyapunov methods have proved to be a handy

tool for analyzing and designing nonlinear control systems [11], [12].

In the same manner, they have been highly used for convergence

rate estimation in systems exhibiting finite- and fixed-time stability

properties [4], [8], [13], and in particular in systems with sliding

modes [14]. For systems exhibiting the predefined-time stability

property, similar methods have been applied. For instance, different

Lyapunov-like theorems for predefined-time stability were proposed

in [9], [15]–[17] allowing the development of several control

applications [18]–[20].

This paper investigates Lyapunov-like sufficient conditions for

predefined-time stability of autonomous systems. The derived

Lyapunov-like theorem allows to establish equivalence with several

previous Lyapunov-like theorems [9], [16], [17], unifying all the past

contributions in predefined-time stability for autonomous systems.

Moreover, this framework is extended to the analysis of predefined-

time ultimate boundedness, which is specially usefull when analyzing

uncertain systems. To demonstrate the applicability of the proposed

framework, the developed results are used to design a family of

continuous (respectively, discontinuous) controllers, which ensure

predefined-time ultimate boundedness of the solutions to an arbitrarily

small vicinity of a desired manifold (respectively, ensure predefined-

time stability to a desired manifold). Finally, all the mentioned

properties are validated through a simulation example, in order to

show the behavior of the proposed controller, especially regarding

the settling time estimation.

II. PRELIMINARIES

A. Notation

Throughout the paper, the following notation is prevalent:

• R is the set of real numbers, R+ = {x ∈ R : x > 0},

R≥0 = {x ∈ R : x ≥ 0} and R̄+ = R+ ∪ {∞}.

• For x ∈ R
n, xT denotes its transpose, ||x|| =

√
xTx and, for

r ∈ R+, Br(x) = {y ∈ R
n : ||y − x|| < r}.

• For any real number h, the functions ⌊·⌉h : R → R and

|⌊·⌉|h : R
n → R

n are defined as ⌊x⌉h = |x|hsign(x) for

any x ∈ R \ {0} and |⌊x⌉|h = x

||x||1−h for any x ∈ R
n \ {0},

respectively. Moreover, if h > 0, ⌊0⌉h = 0 and |⌊0⌉|h = 0.

• Whereas ẋ = dx
dt denotes the first derivative of the function

x : R → R
n with respect to time, θ′(z) = dθ

dz denotes the first

derivative of the function θ : R → R with respect to the variable

z, which may represent anything but the time variable t.
• For α, β ∈ R+, Γ(α) =

∫∞
0 tα−1e−tdt is the Gamma

Function and B(α, β) =
∫ 1
0 tα−1(1 − t)β−1dt is the Beta

Function; additionally, γ(α, r) =
∫ r
0 tα−1e−tdt and P (α, r) =

γ(α,r)
Γ(α) are the Incomplete Gamma Function and the regularized

Incomplete Gamma Function, respectively, which are defined

for all r ∈ R≥0; finally b(α, β, r) =
∫ r
0 tα−1(1− t)β−1dt and

I(α, β, r) =
b(α,β,r)
B(α,β)

are the Incomplete Beta Function and the

regularized Incomplete Beta Function, respectively, which are

defined for all r ∈ [0, 1] [21].

http://arxiv.org/abs/1910.14604v1
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B. On predefined-time stability

Consider the following autonomous system:

ẋ = f(x;ρ), x(0) = x0, (1)

where x : R≥0 → R
n is the system state, the vector ρ ∈ R

l stands

for the tunable parameters of (1). The function f : Rn → R
n may

be discontinuous, and such that the solutions of (1) exist and are

unique in the sense of Filippov (see [22] and [23, Proposition 5]).

Thus, Φ(t,x0) denotes the solution of (1) starting from x0 ∈ R
n at

t = 0. Moreover, the origin x = 0 is the unique equilibrium point

of (1).

Remark 1: The parameter dependent system (1) is equivalent to

the controlled system

ẋ = g(x,u), (2)

where g : R
n × R

m → R
n, the control u ∈ R

m is a feedback

function of x with tunable parameters ρ, i.e., u = φ(x;ρ), with

φ : Rn → R
m. Substituting u = φ(x;ρ) in (2) eliminates u and

yields f(x;ρ) := g(x,φ(x;ρ)).

All the notions defined and treated hereafter are global, so we will

omit to indicate it.

Definition 1 (Stability notions [24]): The origin of (1) is said to

be

• Lyapunov stable if for any x0 ∈ R
n, the solution Φ(t,x0) is

defined for all t ≥ 0, and for any ǫ > 0, there is δ > 0 such

that for any x0 ∈ R
n, if x0 ∈ Bδ(0) then Φ(t,x0) ∈ Bǫ(0)

for all t ≥ 0;

• asymptotically stable if it is Lyapunov stable and Φ(t,x0) → 0
as t → ∞, for any x0 ∈ R

n;

• finite-time stable if it is Lyapunov stable and for any x0 ∈ R
n

there exists 0 ≤ τ < ∞ such that Φ(t,x0) = 0 for all t ≥ τ .

The function T (x0) = inf {τ ≥ 0 : Φ(t,x0) = 0, ∀t ≥ τ} is

called the settling-time function of (1);

• fixed-time stable if it is finite-time stable and the settling-time

function of (1), T (x0), is bounded on R
n, i.e. there exists Tmax

such that sup
x0∈Rn T (x0) ≤ Tmax < ∞

Example 1: Consider system

ẋ = − 1

ρ1
⌊x⌉ρ2 − ρ1 ⌊x⌉2−ρ2 , (3)

where x ∈ R is the system state, ρ = [ρ1, ρ2]
T ∈ R

2 is the vector of

tunable parameters of (3), which comply to ρ1 > 0 and 0 < ρ2 < 1.

Using [8, Lemma 1], one can easily show that the origin of (3) is

fixed-time stable. Moreover, from [17, Theorem 1], the settling-time

function of (3) satisfies

sup
x0∈R

T (x0) =
B (1/2, 1/2)

2ρ
−1/2
1 ρ

1/2
1 (1− ρ2)

=
π

2(1− ρ2)
>

π

2
.

This example shows that the convergence time for system (3),

whose origin is fixed-time stable, cannot be reduced arbitrarily

no matter how the parameters ρ are tuned. The case when the

convergence time can be arbitrarily assigned through an appropriate

tuning of the system parameters ρ corresponds to the notion of

predefined-time stability, which is defined as follows:

Definition 2: The origin of (1) is said to be predefined-time

stable if it is fixed-time stable and for any Tc ∈ R+, there exists

some ρ ∈ R
l such that the settling-time function of (1) satisfies

sup
x0∈Rn

T (x0) ≤ Tc.

Example 2: Consider system (see [6], [8])

ẋ = −
⌊

ρ1 ⌊x⌉ρ3 + ρ2 ⌊x⌉ρ4
⌉ρ5 , (4)

where x ∈ R is the state of the system, ρ = [ρ1, ρ2, ρ3, ρ4, ρ5]
T ∈

R
5 is the vector of tunable parameters of (4), which comply to

ρ1, ρ2, ρ5 > 0 and 0 < ρ5ρ3 < 1 < ρ5ρ4. The origin of (4) is

fixed-time stable, by [8, Lemma 1]. Moreover, given Tc ∈ R+, there

exist ρ1 = ρ2 =
Γ(1/4)4

4πT2
c

, ρ3 = 1, ρ4 = 3 and ρ5 = 1
2 , such that

the settling-time function of (4) satisfies (see [17, Theorem 1])

sup
x0∈R

T (x0) =
Γ(1/4)2

(

Γ(1/4)4

4πT2
c

)1/2
Γ(1/2)(3− 1)

= Tc.

Thus, the origin of system (4) is, in fact, predefined-time stable.

The following proposition is an immediate consequence of

Definition 2, of predefined-time stability.

Proposition 1: If a system does not have tunable parameters, then

its origin is not predefined-time stable.

From Proposition 1, every system with fixed-time stable origin

whose parameters are fixed numerical values (they are not tunable),

cannot exhibit the predefined-time stability property.

On the other hand, when dealing with systems subject to

uncertainties or external perturbations, it is difficult or even

impossible to ensure exact convergence to the origin. Instead, it is

common to provide convergence not to the origin but to a vicinity

of it. In this sense, it would be useful to ensure that, not only the

convergence time can be arbitrarily assigned, but also that the radius

of the vicinity can be arbitrarily selected through an appropriate

tuning of the parameters of the system. This notion is formally defined

as follows:

Definition 3: A solution Φ(t,x0) of (1) is said to be predefined-

time ultimately bounded with predefined bound if for any Tc, b ∈
R+, there exist some ρ ∈ R

l such that for any x0 ∈ R
n,

||Φ(t,x0)|| ≤ b for all t ≥ Tc.

C. Class K1 functions

Inspired in the class K functions in [25, Definition 1] and [12,

Definition 4.2], the class K1 functions are defined as follows:

Definition 4 (K1 functions): A scalar continuous function κ :
R≥0 → [0, 1) is said to belong to class K1, denoted as κ ∈ K1,

if it is strictly increasing, κ(0) = 0 and κ(r) → 1 as r → ∞.

If κ ∈ K1 is also differentiable, it is said to be a differentiable

class K1 function. In such a case, there exists a continuous function

Φ : R≥0 → R+ such that dκ
dr = Φ(r) > 0.

The above can be equivalently written in an integral form as

κ(r) =
∫ r
0 Φ(z)dz. Since κ(r) → 1 as r → ∞, the function Φ

is required to satisfy
∫∞
0 Φ(z)dz = 1, i.e., functions Φ and κ can be

viewed as probability density functions and cumulative distribution

functions, respectively, of positive random variables.

Proposition 2: Every class K1 function is bijective.

Proof: Let κ ∈ K1. It is injective because κ is continuous and

strictly increasing. Moreover, since κ(0) = 0, κ is continuous and

strictly increasing, and limr→∞ κ(r) = 1, its image is κ(R≥0) =
[0, 1). Thus, it is surjective. Hence, it is concluded that κ is bijective.

Since every class K1 function is bijective, their inverse exist.

Proposition 3: Let κ ∈ K1. Then:

(i) κ−1(0) = 0;

(ii) κ−1 is continuous (i.e., κ is a homeomorphism) and strictly

increasing.

(iii) limr→1− κ−1(r) = ∞.

Proof: These properties follow directly from Definition 4, and

the fact that the inverse of a strictly increasing function is continuous

and strictly increasing.
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The next lemma states some useful properties of class K∞ and

class K1 functions, which will be used in the next section.

Lemma 1: Let α ∈ K∞ (see [25, Definition 1]) and κ1, κ2 ∈ K1.

Then, κ1 ◦ α ∈ K1, and κ−1
1 ◦ κ2 ∈ K∞.

Proof: The composition of increasing functions is increasing.

Moreover, note that (κ1 ◦ α)(0) = κ1(α(0)) = κ1(0) = 0 and

(κ−1
1 ◦κ2)(0) = κ−1

1 (κ2(0)) = κ−1
1 (0) = 0. Finally, since κ1 is an

homeomorphism,

lim
r→∞

(κ1 ◦ α)(r) = κ1

(

lim
r→∞

α(r)
)

= 1,

and

lim
r→∞

(κ−1
1 ◦ κ2)(r) = κ−1

1

(

lim
r→∞

κ2(r)
)

= ∞.

Example 3: Some examples of K1 functions are:

(i) κ(r) = 1− exp(−r);
(ii) κ(r) = 2

π arctan(r);
(iii) κ(r) = r

r+α , with α > 0;

(iv) κ(r) = P (α, r), with α > 0 (see Subsection II-A).

(v) κ(r) = I(α,β, r
r+1), with α, β > 0 (see Subsection II-A).

III. A LYAPUNOV CHARACTERIZATION OF

PREDEFINED-TIME STABILITY

This section states a Lyapunov-like theorem for predefined-time

stability. The importance of this theorem is twofold. On the one

hand, it establishes equivalence between previous Lyapunov theorems

for predefined-time stability, constituting a unifying result. On the

other hand, it allows designing predefined-time stable controllers, as

shown in Section IV. Moreover, this Lyapunov theorem is extended

for analyzing the property of predefined-time ultimate boundedness

with predefined bound. Consequently, the results presented in this

section constitute the main contribution of this note.

Theorem 1: Let κ ∈ K1 be differentiable in R \ {0}, and V :
R
n → R≥0 be a continuous, positive definite and radially unbounded

function. If for any Tc ∈ R+, there exists some ρ ∈ R
l, such that

the time-derivative of V along the trajectories of (1) satisfies

V̇ (x) ≤ − 1

(1− p)Tc

κ(V (x))p

κ′(V (x))
, for x ∈ R

n \ {0} , (5)

for some 0 ≤ p < 1, then the origin of (1) is predefined-time stable.

Moreover, if (5) is an equality, then sup
x0∈Rn T (x0) = Tc.

Proof: Let Tc ∈ R+. Then, there exists some ρ ∈ R
l such

that (5) holds. Moreover, since V : R
n → R≥0 is a continuous,

positive definite and radially unbounded function, and its time-

derivative (5) is negative for x ∈ R
n \ {0}, the origin of system (1)

is asymptotically stable [12].

Now, let Φ(t,x0) be a solution of (1) and let y : R≥0 → R≥0 be

a function that satisfies

ẏ = − 1

(1− p)Tc

κ(y)p

κ′(y)
,

and V (x0) ≤ y(0). Hence,

κ(y(t)) =







[

κ(y(0))1−p − t
Tc

]
1

1−p
if 0 ≤ t ≤ Tcκ(y(0))

1−p

0 if t > Tcκ(y(0))
1−p,

and V (Φ(t,x0)) ≤ y(t) (it is an equality only if (5), is an equality)

by the comparison lemma [12]. Thus, V (Φ(t,x0)) = 0 for t ≥
Tcκ(V (x0))

1−p, implying that the trajectories of (1) reach the origin

in finite time, and the settling-time function satisfies

sup
x0∈Rn

T (x0) ≤ sup
x0∈Rn

Tcκ(V (x0))
1−p = Tc.

Hence, by Definition 2, the origin of system (1) is in fact predefined-

time stable. Moreover, if (5) is an equality, then sup
x0∈Rn T (x0) =

sup
x0∈Rn Tcκ(V (x0))

1−p = Tc.

Remark 2: Theorem 1 can be equivalently formulated in terms

of a function W : R
n → R≥0, which satisfies W (x) = 0 if

and only if x = 0, 0 ≤ W (x) < 1, and lim||x||→∞ W (x) = 1.

This equivalence is given by the transformation W (x) = κ(V (x)).
Moreover, in this equivalent reformulation, inequality (5) is replaced

by inequality

Ẇ (x) ≤ − 1

(1− p)Tc
W (x)p, for x ∈ R

n \ {0} .

In this sense, [15, Theorem 10] is a corollary of Theorem 1, which

is obtained fixing p = 0.

Remark 3: Although the result in Theorem 1 is independent of the

choice of κ ∈ K1, the form of the differential inequality (5) strongly

depends on the particular selection of this function. Indeed, previous

Lyapunov-like theorems for predefined-time stability reported in the

literature are, in fact, particular forms of Theorem 1. For instance:

(i) [16, Theorem III.1] is obtained from Theorem 1 with

the particular selections of κ(r) = P
(

1−βq
s , αrs

)

=

γ
(

1−βq
s ,αrs

)

Γ
(

1−βq
s

) , with α, β, s, q > 0 and βq < 1, and p = 0.

Thus, inequality (5) then becomes

V̇ (x) ≤ −
α

βq−1

s Γ
(

1−βq
s

)

sTc
exp

(

αV (x)s
)

V (x)βq (6)

for x ∈ R
n \ {0}.

(ii) At the same time, with α = β = 1, q = 1− s and 0 < s ≤ 1,

inequality (6) reduces to

V̇ (x) ≤ − 1

sTc
exp

(

V (x)s
)

V (x)1−s, for x ∈ R
n \ {0} ,

which is equivalent to Theorem 1 with the particular selection

of κ(r) = 1 − exp(−rs). In this form, the result presented in

[9, Theorem 2.1] is recovered.

(iii) [17, Theorem 3] is retrieved from Theorem 1 with the particular

selections of κ(r) = I
(

ms,mq ,
βrq−s

βrq−s+α

)

, with ms =
1−ks
q−s > 0, mq = kq−1

q−s > 0, α, β, k > 0 and 0 < ks < 1 <
kq, and p = 0. Replacing the above picks into inequality (5), it

yields

V̇ (x) ≤ − ζ

Tc

(

αV (x)s + βV (x)q
)k

, for x ∈ R
n \ {0} ,

where ζ =
Γ(ms)Γ(mq)

αkΓ(k)(q−s)

(

α
β

)ms
.

Thus, in this work, it is shown for the first time that all previous

Lyapunov-like theorems for predefined-time stability of autonomous

systems are equivalent.

Lyapunov analysis can also be extended to show predefined-time

ultimate boundedness with predefined bound of the solutions of (1)

(see Definition 3), even if there is no equilibrium point at the origin.

Sufficient conditions are stated in the following theorem:

Theorem 2: Let κ ∈ K1 be differentiable in R \ {0}, and V :
R
n → R≥0 be a continuous, positive definite and radially unbounded

function. If for any Tc, µ ∈ R+, there exists some ρ ∈ R
l, such that

the time-derivative of V along the trajectories of (1) satisfies

V̇ (x) ≤ − 1

(1− p)Tc

κ(V (x))p

κ′(V (x))
, for ||x|| ≥ µ, (7)

then, for any x0 ∈ R
n the solution Φ(t,x0) of (1) satisfies

||Φ(t,x0)|| ≤ b = α−1
1 (α2(µ)), for all t ≥ Tc,
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where α1, α2 ∈ K∞.

Moreover, if V (x) = α(||x||), with α ∈ K∞, then b = µ in

the above inequality. This is, the solutions of (1) are predefined-time

ultimately bounded with predefined bound.

Proof: Let Tc, µ ∈ R+. Then, there exists ρ ∈ R
l such

that (7) holds. Since V is a continuous, positive definite and radially

unbounded function, there exist α1, α2 ∈ K∞ such that α1(||x||) ≤
V (x) ≤ α2(||x||) [12, Lemma 4.3].

Note that ||x|| < µ ⇐⇒ α2(||x||) < α2(µ) ⇒ V (x) < α2(µ),
i.e. the set {x ∈ R

n : ||x|| < µ} ⊆ {x ∈ R
n : V (x) < α2(µ)}, or

equivalently {x ∈ R
n : V (x) ≥ α2(µ)} ⊆ {x ∈ R

n : ||x|| ≥ µ}.

Hence, inequality (7) holds for V (x) ≥ α2(µ).
The above implies that the set {x ∈ R

n : V (x) ≤ α2(µ)} is

positively invariant, since the derivative V̇ (x) is negative in its

boundary {x ∈ R
n : V (x) = α2(µ)}.

Now, we show that all trajectories starting in the

set {x ∈ R
n : V (x) ≥ α2(µ)}, must enter the set

{x ∈ R
n : V (x) ≤ α2(µ)} within at most Tc time units. Let

Φ(t,x0) be a solution of (1), with x0 ∈ {x ∈ R
n : V (x) ≥ α2(µ)},

i.e. V (x0) ≥ α2(µ). From (7) and following similar arguments as

in Theorem 1, κ(V (Φ(t,x0))) ≤
[

κ(V (x0))
1−p − t

Tc

]
1

1−p
,

for t ∈
[

0, Tc(κ(V (x0))
1−p − κ(α2(µ))

1−p)
]

. Hence,

κ(V (Φ(t,x0))) ≤ κ(α2(µ)) ⇐⇒ V (Φ(t,x0)) ≤ α2(µ) for

all t ≥ Tc(κ(V (x0))
1−p − κ2(µ)

1−p), and consequently for all

t ≥ Tc.

Furthermore, note that V (x) ≤ α2(µ) ⇒ α1(||x||) ≤ α2(µ) ⇐⇒
||x|| < α−1

1 (α2(µ)). Hence, ||Φ(t,x0)|| ≤ α−1
1 (α2(µ)) for all

t ≥ Tc.

Moreover, if V (x) = α(||x||), one can select α1 = α2 = α, and

the result is obtained.

IV. APPLICATION: LYAPUNOV-BASED PREDEFINED-TIME

CONTROLLER DESIGN

A. Problem statement

Consider the following affine control system:

ẋ = f(x) +B(x)v + δ(x, t) (8)

where x : R≥0 → R
n is the system state, v ∈ R

m is the control

input, δ : Rn × R≥0 → R
n is a disturbance vector that includes

plant parameter variations and external unknown perturbations, and

B : Rn → R
n×n is continuous and such that rank B(x) = m for

all x ∈ R
n.

The objective is to design a feedback control input v such that the

trajectories of (8) reach (a vicinity of) the manifold

s(x, t) = 0, (9)

where s : Rn × R≥0 → R
m is a smooth mapping, in an arbitrarily

selected time Tc ∈ R+ and remain there for all t ≥ Tc.

Remark 4: There are several important control problems which

take the form of system (8) subject to (9). For instance,

(i) An output tracking problem, where s(x, t) represents the

output tracking error vector; the relative degree of each output

component with respect to the control input is equal to one, and

the system (8) with respect to (9) is minimum phase [26]. The

control objective is to ensure the tracking error be predefined

time stable.

(ii) A sliding mode (SM) control design problem, where s(x, t) =
0 (9) represents a sliding manofold with a desired SM motion [3].

In this case, the objective is to induce the SM on the designed

manifold in predefined-time (predefined-time reaching phase).

(iii) An optimization problem solved by dynamic networks, where

s(x, t) is a variable which expresses the error in the satisfaction

of equality constraints [3].

The time derivative of s(x, t) is

ṡ = G(x, t)f(x) +G(x, t)B(x)v +G(x, t)δ(x, t) +
∂s(x, t)

∂t
.

(10)

Then, assuming that rank[G(x, t)B(x)] = m, for all x ∈ R
n and

t ≥ 0, the control v is chosen as

v = −[G(x, t)B(x)]−1
[

G(x, t)f(x) +
∂s(x, t)

∂t
+ u

]

, (11)

where u ∈ R
m is a virtual control input and G(x, t) =

∂s(x,t)
∂x .

Substituting (11) in (10) results in

ṡ = u+∆(x, t), s(x0, 0) = s0, (12)

where ∆(x, t) = G(x, t)δ(x, t), which is assumed to be globally

bounded by sup(x,t)Rn∈×R≥0
||∆(x, t)|| ≤ δ with 0 ≤ δ < ∞ a

known constant.

From a control design point of view, the perturbation term ∆(x, t)
can only be completely rejected by a discontinuous control term (like

the unit-vector controller s

||s||
), given that it is only restricted to be

bounded (no conditions of smoothness, Lipschitz continuity neither

continuity are assumed). However, such a discontinuous control

term might deteriorate the components of a real physical system

due to high-frequency oscillations, or might even be impossible to

implement due to limited actuator response.

A solution would be to sacrifice the exact convergence to the

manifold s(x, t) = 0 (9) in order to obtain a continuous controller

(like the continuous approximation of the unit-vector controller
s

||s||+ǫ
, with ǫ > 0). In this case, as pointed out in Section II, it can

be ensured that the trajectories converge to a vicinity of s(x, t) = 0
(see Eq. (9)).

Based on the above, the objective is to design the virtual control

input u as a feedback control law u = u(s) that:

• enforces predefined-time stability to the origin of (12), obtaining

a discontinuous controller; or

• enforces the solutions of (12) to be predefined-time ultimately

bounded with predefined bound, obtaining a continuous

controller.

B. Proposed solution

The proposed solution is a corollary of Theorems 1 and 2.

Corollary 1: Consider system (12). Selecting u as

u = − 1

(1− ρ2)ρ1

κ(||s||)ρ2
κ′(||s||) |⌊s⌉|0 − ρ3

s

||s||+ ρ4
, (13)

where κ ∈ K1 is such that κ′ : R≥0 → R̄+, ρ1 > 0, 0 ≤ ρ2 < 1,

ρ3 > δ and ρ4 ≥ 0, the trajectories of the closed-loop system (12)-

(13) are predefined-time ultimately bounded with predefined bound.

In fact, for any Tc, b ∈ R+ and s0 ∈ R
m, the solution Φ(t, s0)

of (12)-(13) satisfies ||Φ(t,s0)|| ≤ b = δρ4
ρ3−δ for all t ≥ Tc = ρ1.

Moreover, if ρ4 = 0, then the origin s = 0 of the closed-loop

system (12)-(13) is predefined-time stable.

Proof: Consider the the continuous, positive definite

and radially unbounded function V (s) = ||s||, and

let Tc, b ∈ R+. The time-derivative of V along the

trajectories of the closed-loop system (12)-(13) is V̇ (s) =
∣

∣

∣

⌊

sT
⌉
∣

∣

∣

0 [

− 1
(1−ρ2)ρ1

κ(||s||)ρ2

κ′(||s||)
|⌊s⌉|0 − ρ3

s

||s||+ρ4
+∆(x, t)

]

.

Note that:
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(a) the continuous approximation of the unit-control term satisfies
s

||s||+ρ4
= |⌊s⌉|0 − ρ4|⌊s⌉|

0

||s||+ρ4
;

(b) the product

∣

∣

∣

⌊

sT
⌉∣

∣

∣

0
|⌊s⌉|0 = 1;

(c) by the Cauchy-Schwarz inequality

∣

∣

∣

⌊

sT
⌉∣

∣

∣

0
∆ ≤ δ.

Therefore, considering (a), (b) and (c), the time derivative V̇ (s)
results in

V̇ (s) ≤ − 1

(1− ρ2)ρ1

κ(V (s))ρ2

κ′(V (s))
−

(

ρ3 − δ − ρ3ρ4
||s||+ ρ4

)

.

Since ρ3 − δ − ρ3ρ4
||s||+ρ4

≥ 0 ⇐⇒ ||s|| ≥ δρ4
ρ3−δ , then

V̇ (s) ≤ − 1

(1− p)Tc

κ(V (s))p

κ′(V (s))
, for ||s|| ≥ µ, (14)

with Tc = ρ1, µ = δρ4
ρ3−δ and p = ρ2.

From the above and using Theorem 2, the solutions of the closed-

loop system (12)-(13) satisfy ||Φ(t, s0)|| ≤ b = µ = δρ4
ρ3−δ for all

t ≥ Tc = ρ1.

Moreover, if ρ4 = 0 ⇐⇒ µ = 0, inequality (14) holds for all

s ∈ R
m. Hence, by Theorem 1, the origin s = 0 of the closed-loop

system (12)-(13) is predefined-time stable.

It is worth to notice that the predefined time Tc = ρ1 and the

predefined bound b = δρ4
ρ3−δ can be selected independently since

they depend on different parameters.

Example 4: Let x = [x1 x2]
T ∈ R

2 be a point in the plane

whose dynamics is given by ẋ = u, where u = [u1 u2]
T ∈ R

2 is

the feedback control signal to be designed so that the point x tracks

a desired reference trajectory r(t) = [r1(t) r2(t)]
T : R≥0 → R

2.

Whereas the reference trajectory signal is assumed to be known,

its derivative ṙ(t) is assumed to be unknown but bounded of the

form supt∈R≥0
||ṙ(t)|| ≤ δ. This model is a classic example in

teleoperation tasks, such as haptic interfaces, remote command of

manipulators, land, aerial and underwater robots, to name a few,

where the position reference is given in real-time by the user, but

the desired velocity reference is unknown. The dynamics of the error

variable, s(x, t) = x − r(t), is then ṡ = u − ṙ(t). Under all the

above assumptions, the feedback control signal u can be designed

as (13) in Corollary 1.

For simulation purposes, the function κ(r) in (13) is selected as

κ(r) = I
(

mρ7 ,mρ8 ,
ρ6r

ρ8−ρ7

ρ6r
ρ8−ρ7+ρ5

)

, with mρ7 = 1−ρ9ρ7
ρ8−ρ7

>

0, mρ8 = ρ9ρ8−1
ρ8−ρ7

> 0, ρ5, ρ6, ρ9 > 0 and 0 < ρ9ρ7 <
1 < ρ9ρ8. Furthermore, the reference signal is selected as r(t) =
[cos(2πt) sin(2πt)]T (i.e., the point x is required to follow a

circumference of radius 1), whose derivative norm is ||ṙ(t)|| =
2π = δ. Moreover, the following simulations are conducted using

the Euler integration method, with a fundamental step size of

1 × 10−5 s. Finally, the initial conditions of the system are set as

x0 = [x10 x20] = x0[1 1], with x0 taking the values of 101 , 103

and 1021.

Part I: assume that the tracking error s is required to reach a

vicinity of the origin with a radius of measure b = 0.01 in at most

Tc = 1 time units. To this end, the parameters of controller (13) are

selected as ρ1 = 1, ρ2 = 0, ρ3 = 4π, ρ4 = 0.01, ρ5 = 1, ρ6 = 1,

ρ7 = 0.9, ρ8 = 1.1, and ρ9 = 1. Note that, with this parameter

selection, controller (13) is continuous.

Part II: assume that the tracking error s is required to reach the

origin in at most Tc = 1 time units. To this end, the parameters of

controller (13) are selected as ρ1 = 1, ρ2 = 0, ρ3 = 4π, ρ4 = 0,

ρ5 = 1, ρ6 = 1, ρ7 = 0.9, ρ8 = 1.1, and ρ9 = 1. Note that, with

this parameter selection, controller (13) is discontinuous.

0.0 0.5 1.0 1.5 2.0
t

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
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x0=103
x0=1021

Tc=1

r1(t)
r2(t)
x1(t)
x2(t)

0.0 0.5 1.0 1.5 2.0
t

0.00

0.01

0.02

||e
(t)

||

x0=101

x0=103
x0=1021

Tc=1
ε=0.01

Fig. 1. Several trajectories of the state variables x1, x2 vs. t, and ||e||
vs. t. Continuous controller.

−2 −1 0 1 2
x1

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x 2
x0=101

x0=103x0=1021
(r1, r2)
(x1, x2)

Fig. 2. Several trajectories of the point (x1, x2) in the plane.
Continuous controller.

Figs. 1 and 3 show the state variables and the reference signal

over time, respectively, for the continuous (ρ4 = 0.01) and the

discontinuous (ρ4 = 0) cases. They also show the tracking error norm

||s|| for a better appreciation of the convergence to the 0.01-vicinity

of the origin, in the continuous case, or the convergence to the origin,

in the discontinuous case. Figs. 2 and 4 show the trajectories of the

point (x1, x2) in the plane, respectively, for the continuous and the

discontinuous cases.

V. CONCLUSION

This technical note was devoted to the study of sufficient Lyapunov-

like conditions to ensure a class of dynamic systems to exhibit

a predefined time stability property. The introduction of class

K1 allowed to establish equivalence with previous Lyapunov-like

theorems for predefined-time stability for autonomous systems [9],

[15]–[17]. Moreover, the derived Lyapunov theorem was extended

for analyzing predefined-time ultimate boundedness with predefined

bound.

On the other hand, the developed framework was used to design a

class of robust controllers for uncertain affine control systems. This
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Fig. 3. Several trajectories of the state variables x1, x2 vs. t, and ||e||
vs. t. Discontinuous controller.
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Fig. 4. Several trajectories of the point (x1, x2) in the plane.
Discontinuous controller.

class of controllers can be continuous, providing predefined-time

ultimate boundedness of the solutions, or discontinuous, providing

predefined-time stability to some desired manifold. Finally, the

theoretical findings were validated through a numerical simulation,

which reveals the effectiveness of the proposed control scheme.

As future work, the Lyapunov-like conditions introduced in

Theorems 1-2, require further research to exploit them for the

controller design of particular classes of nonlinear systems.

ACKNOWLEDGMENT
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“Predefined-time stabilisation of a class of nonholonomic systems,”
International Journal of Control, pp. 1–8, 2019.

[21] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions:

With Formulas, Graphs, and Mathematical Tables, 9th ed. Dover
Publications, 1965.

[22] A. F. Filippov, Differential equations with discontinuous righthand sides,
Mathematics and . its Applications (Soviet Series), Eds. Kluwer
Academic Publishers Group, Dordrecht, 1988.

[23] J. Cortes, “Discontinuous dynamical systems,” IEEE Control Systems
Magazine, vol. 28, no. 3, pp. 36–73, June 2008.

[24] F. Lopez-Ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, “On
necessary and sufficient conditions for fixed-time stability of continuous
autonomous system,” in Proc. 17th European Control Conference (ECC),
Jun 2018.

[25] C. M. Kellett, “A compendium of comparison function results,”
Mathematics of Control, Signals, and Systems, vol. 26, no. 3, pp. 339–
374, Sep 2014.

[26] J. J. Ley-Rosas, L. E. González-Jiménez, A. G. Loukianov, and
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