Skip to Main content Skip to Navigation
Journal articles

Fault diagnosis of locomotive electro-pneumatic brake through uncertain bond graph modeling and robust online monitoring

Abstract : To improve reliability, safety and efficiency, advanced methods of fault detection and diagnosis become increasingly important for many technical fields, especially for safety related complex systems like aircraft, trains, automobiles, power plants and chemical plants. This paper presents a robust fault detection and diagnostic scheme for a multi-energy domain system that integrates a model-based strategy for system fault modeling and a data-driven approach for online anomaly monitoring. The developed scheme uses LFT (linear fractional transformations)-based bond graph for physical parameter uncertainty modeling and fault simulation, and employs AAKR (auto-associative kernel regression)-based empirical estimation followed by SPRT (sequential probability ratio test)-based threshold monitoring to improve the accuracy of fault detection. Moreover, pre- and post-denoising processes are applied to eliminate the cumulative influence of parameter uncertainty and measurement uncertainty. The scheme is demonstrated on the main unit of a locomotive electro-pneumatic brake in a simulated experiment. The results show robust fault detection and diagnostic performance.
Document type :
Journal articles
Complete list of metadata

https://hal-uphf.archives-ouvertes.fr/hal-03429017
Contributor : Mylène Delrue Connect in order to contact the contributor
Submitted on : Monday, November 15, 2021 - 2:00:58 PM
Last modification on : Monday, May 2, 2022 - 11:03:04 AM

Identifiers

Collections

Citation

Gang Niu, Yajun Zhao, Michael Defoort, Michael Pecht. Fault diagnosis of locomotive electro-pneumatic brake through uncertain bond graph modeling and robust online monitoring. Mechanical Systems and Signal Processing, Elsevier, 2015, 50-51, pp.676-691. ⟨10.1016/j.ymssp.2014.05.020⟩. ⟨hal-03429017⟩

Share

Metrics

Record views

16