EPJ Web of Conferences 94, 04011 (2015)
DOI: 10.1051/epjconf/20159404011
(© Owned by the authors, published by EDP Sciences, 2015

Finite strain formulation of viscoelastic damage model for simulation of
fabric reinforced polymers under dynamic loading

S. Treutenaere!-?, F. Lauro', B. Bennani', T. Matsumoto?, and E. Mottola?

1 University of Valenciennes and Hainaut Cambrésis, LAMIH, UMR CNRS 8201, 59313 Valenciennes, France
2 TOYOTA MOTOR EUROPE, 1140 Brussels, Belgium

Abstract. The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness
and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion.
The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing
phenomenological model.

Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading.
This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and
interlaminar matrix damage, viscoelasticty and fibre failure.

The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA
as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the
viscoelasticity is included without losing the direct explicit formulation.

Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus,
the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account
particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the

parameter identification easier, as based on the initial configuration.
This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical
simulations show a good correlation with the experimental results.

1. Introduction

In these last decades, the use of carbon fabric reinforced
polymers (CFRP) in the automotive industry increased
very significantly. Their high specific stiffness and
strength, their great energy absorption as well as the
reduced manufacturing cost widely encourage their
diffusion.

Previously limited to small runs (premium vehicles,
racing), last advances in highly productive manufacturing
process lead to the use of CFRP for high volume automo-
tive production. Therefore, the behaviour understanding
and modelling of these materials become essential for
their implementation into the design loop, needed for the
deployment on mass-produced vehicles. In order to ensure
the protection of pedestrians and drivers/passengers in case
of collision with a CFRP panel, a model dedicated to the
finite element analysis (FEA) of impacts is needed.

The impact properties of layered composite materials
are well reviewed by Richardson [1] and Cantwell [2]. The
nonlinear material behaviour which leads to differences
in the impact response of composites is attributed to
fibre failure, intra- and interlaminar matrix cracking, fibre-
matrix debonding and strain rate sensitivity of the matrix.
Additionally, the textile composite materials are capable of
large shearing prior to the ultimate failure due to the sliding
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and reorientation of yarns. The modelling of all these
phenomena is essential to describe the impact behaviour
of layered fabric composites.

To develop a material model at the ply scale achieves a
balance between CPU-time and physical meaning needed
for structural analysis. Indeed, the properties of the above
mentioned phenomena (except for the interlaminar matrix
cracking) are common to a ply but can vary from one ply
to another. Among these, this study is focused on the finite
strain modelling of the intralaminar matrix damage and the
strain-rate dependency of fabric plies.

The use of the Continuum Damage Mechanic (CDM)
for anisotropic and composite materials was introduced
by Chaboche [3] and Ladeveze [4]. Further works of
Chaboche [5,6] introduced the damage deactivation after
the closing of cracks. Marcin [7] adapted and extended
the micromechanics based CDM model proposed by
Chaboche [8] to the fabric reinforced materials for implicit
simulations.

In addition, Marcin extends the matrix damage model
by taking into account the resin-induced viscoelasticity. To
do this, a bi-spectral viscoelastic model is added. However,
this formulation is not adapted to an explicit analysis
because of the Newton-Raphson iterative loop to achieve
the equilibrium.

Accordingly, the spectral viscoelastic model is
replaced by a generalized Maxwell model. It has been
successfully extended and used in finite strain for
anisotropic [9, 10] materials.
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In this paper, the matrix damage model proposed
by Marcin is coupled to a generalised Maxwell model.
This present damageable viscoelastic model is then
expressed in the finite strain framework and implemented
in the commercial finite element software LS-DYNA. A
comparison between experimental and numerical results is
done in the final part.

2. Continuum matrix damage model

Experimentally the matrix cracks are observed to be
oriented in the directions of reinforcement or transverse
to them. As the Onera Damage Model MicroStructure
(ODM_MS) [7] is based on this assumption, the present
model relies on a close version of the ODM_MS.

2.1. Constitutive relation

The model is formulated in strain-space to ensure a good
efficiency for FEA. The constitutive relation, by using the
Voigt notation, is defined as follows

o=C":(e)—C":(¢" + &) (1)

where o and ¢ are respectively the infinitesimal stress and
strain tensor. C" is the initial stiffness tensor and C™ is the
effective stiffness tensor.

The stored strains &¢° are needed in order to avoid the
discontinuity of the (o, ¢) response for bi-axial loading,
and to ensure the recovery of the initial stiffness after the
damage deactivation.

The evolution of the residual strains ¢” is linearly
dependent on the damage evolution.

2.2. Effective stiffness tensor

The damage is introduced by adding additional compliance
to the initial compliance tensor S0 The effective stiffness
tensor is thus defined with (C™)~!' = §° + AS™. The
additional compliance tensor due to the matrix damage is
given by

Z nmdm H™, 2)

where H™; is the compliance tensor associated with the
damage variable d;". n!" represents the crack closure index
which varies from 0 (closed crack) to 1 (opened crack).

2.3. Damage evolution

In order to describe separately the different fracture
modes, two driving forces affect the evolution of each
damage variable: the normal y!” and the tangential y!™
to the damage directions. The thermodynamic forces
so defined are dependent on the effective strain tensor,
which corresponds to the positive part of the spectral
decomposition of the strain tensor.
Therefore, the damage criterion is defined as follows

F' = f"Orm + [ o —di" <0 (3)

with f the cumulative distribution function of Weibull.
This formulation — compared to a standard frame
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Figure 1. Generalised Maxwell model.

where the thermodynamic forces are based on the
derivative of the Helmholtz free energy — makes easier
the parameter identification, retains the explicitness of the
formulation and ensures the thermodynamic coherence.

3. Viscoelastic damageable continuum
model

The generalised Maxwell model is well adapted to the
explicit finite element method because of the direct
dependence of the total stress with the strain. It is
symbolically represented by a spring of stiffness C
paralleled with N Maxwell elements (Fig. 1).

Hence, the total stress, provided by the coupling
between the above mentioned matrix damage and the
generalised Maxwell viscoelastic models, is given by

N
= Z )

where 0, is the long time stress, defined by means of the
ODM_MS with the equation (1), and h ;j is the effective
viscoelastic stress of the j-th branch. This tensor is
determined thanks to the Boltzman superposition principle
and is expressed in an iterative form [9, 10] by

~ INAW _ 1 —exp
hj(t”“) = exp (—;)hj(t") + C AA@

. At
J 7

6
with At = "1 — 1", Ae = (") — (") and C™; the
effective viscoelastic stiffness tensor. This tensor is defined
in a same manner as the effective stiffness tensor presented
in the subsection 2.2. Consequently,

- ~1
¢ =(57) and — Y4 Zd'"Hifj.’"’
(6)

where d" is the same damage variable as that used during
the computation of the long time stress in the Eq. (1), S;? is
the initial viscoelastic compliance tensor and H; ™ is the
viscoelastic compliance tensor associated with the damage
variable d;".

To use the same damage variables is not unreasonable
as the matrix damage and the viscoelasticity are both
inherent in the resin.
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Figure 2. Deformation of a body with representation of
undeformed and current configurations.

4. Material model formulation for finite
strain

Given the shear behaviour of the fabric composite ply with
the possibility of large rotations of the yarns, the base
(or undeformed) and the current (deformed) configurations
cannot be assumed identical. It is therefore essential to
extend the model in finite strain.

With few exceptions, Lagrangian (or Material)
coordinates are used to describe the deformations of a
solid. This approach facilitates the formulation of material
constitutive models since the position and the physical
properties of solid particles are described according to a
reference position of these material particles and time.

4.1. Expression of tensors

As the objective is the formulation of a constitutive model
in finite strain for structural analysis, it is appropriate to
recall the definition of strain and stress tensors.

Let dX be a position vector which describes material
points in the undeformed configuration. The material
points in the deformed configurations are now described
by dx (Fig. 2). The change of the material points is defined
by the function x; = m; (X, t). Hence, the differential is

- axi
T 9X,

which leads to the definition of the deformation gradient
tensor F by

dxi

dx;

- - dx;
dx =FdX  with Fj = —1. %)
Xy
The transformation of a volume element dv, to a volume
element dv is given by the relation

dv = Jdvy with J =det F.

The elongation of a position vector in the N direction is
defined as

(IYI) dl —dly
e - .
dly

Lastly, the shear angle is determined by

y(M, N) = (M, N)— (n, ).

From now, a distinction should be made between the
tensors expressed according to the base configuration or
the current configuration.

First of all, suppose that the reference is the base
configuration. The scalar product of the material vectors
in the current configuration, evaluated according to these
material vectors in the base configuration, is given by

dx.8x = dx;.8x; = F.;dX; Fix6Xk
=dX,;F},Fix$Xx ®)
— dXF'F§X =dX -C-8X

where C = F'F is the right Cauchy-Green deformation
tensor. Similarly, the variation of the scalar product
according to the material vectors in the base configuration
is defined with

dx.5x —dX.6X =dX;(Cyx — 8;x)8Xk

. R )
=2dX -E-8X

with §;x = 1 when J = K, otherwise zero, and where
1

E = 5(C —1) is called the Green-Lagrange strain tensor
with 1 the identity tensor.

In a consistent manner, but by considering the current
configuration as reference, the strain can be described by
the Almansi tensor A = %(1 —B~!) where B = FFT is the
left Cauchy-Green deformation tensor.

Now that the different strain tensors are defined,
the stresses have to be evaluated according to both
configurations too.

d} is a force which acts on the current body and
is the only one measurable from the experiments. By
expressing the force vector according to the base or the

current configuration, this leads to

] ¢ 10
df = TINdS, (10)

{Jf = TndS
with T the Cauchy stress tensor and II the first Piola-
Kirchoff stress tensor (PK1). Note that whereas T is
symmetric, IT because of its mixed nature is not.

Let d}‘o be a virtual force, seen as the equivalent of d}‘
which may act on the reference configuration. d}o has no
physical existence and is the transposition of d} in the base
configuration: d}o = F_ld}.

Hence, a new stress tensor integrally based on the
reference configuration can be defined through the relation
dfy = SNdS, with

S=F'nI (11)

where S is called the second Piola-Kirchoff stress tensor
(PK2) and S is symmetric.

As a result, the behaviour law in finite strain can be
expressed either according to the current configuration by
finding the relation T = 7(A) or according to the reference
configuration by finding the relation S = s(E).

4.2. lterative formulations

By means of the Finite Element Method (FEM), the
final solution is obtained from the base configuration
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C° by stepping computations in an incremental solution
process. At step n, a current configuration C" is computed
based on the reference configuration C*. The choice of
this reference configuration leads to different Lagrangian
formulations.

4.2.1. Updated Lagrangian formulation

In the updated Lagrangian formulation, the reference is
assumed to be the previous current configuration C"~! and
is usually updated after each incremental step. Therefore,
the new current configuration C" is directly getting from
the previous current configuration C"~! (Fig. 3).

The reference configuration being at a deformed state,
the behaviour law is formulated in terms of the conjugate
stress-strain pair T : A.

But this scheme leads to additional computations to
achieve the incremental objectivity. In addition, objective
stress rate as the commonly employed Green-Naghdi
or Jaumann, do not correctly follow the directions of
anisotropy of the composite material [11,12].

LS-DYNA, for example, uses the updated Lagrangian
framework as stress-return algorithm.

4.2.2. Total Lagrangian formulation

Otherwise, in the total Lagrangian formulation, the
reference is assumed to be the base configuration at
each step. Therefore, the current configuration C" is
always getting from the base configuration C°, regardless
the current configuration computed at the previous step
(Fig. 4).

The reference configuration being at the undeformed
state, the behaviour law is formulated in terms of the
conjugate stress-strain pair (S, E).

With this formulation the objectivity is ensured by the
use of total Lagrangian tensors and the direction of fibres
is well followed. This formulation is used to formulate the
present model in finite strain.

4.2.3. Coupling

The formulation used by the finite element program differs
from the chosen scheme for the material model. The links
between the total and the updated Lagrangian frameworks
need to be established.

This is done by converting the second Piola-Kirchoff
stress tensor to the Cauchy stress tensor through the push-
forward operation by using the formula

T = J 'FSF'. (12)

4.3. Constitutive relation

The matrix damage and the viscoelastic models share the
same damage variables. Therefore, it is essential that both
models are expressed by using the same formulation. Due
to the anisotropy and as explained in the Sect. 4.2.2, the
model is formulated in the total Lagrangian framework.

The second Piola Kirchoff stress tensor S and the
Green-Lagrange strain tensor E are symmetric and can be
represented through the Voigt notation, respectively s and
£¢. By following the methods given by Kaliske [9, 10] and
according to the damageable vicoelastic model formulated
in the Sect. 3, the constitutive relation becomes

S =500+ > & (13)
j=1
with
Soo = C" 1 (e6) — C°: (], + &) (14)
and

~ n At ~ n
g;(t"™) =exp (—)g,»(r )
Tj
_ l—exp (—%)
+ ijTjAE(;. (15)

Tj

The parameter identification have to be adapted to this
finite strain framework.

4.3.1. Shear locking

In the particular case of textile fabric, which is when the
yarns are interlaced, a locking phenomenon appears after
the shear reaches a critical angle. Accordingly, a significant
rise of the elastic shear stiffness is observed. To take into
account this phenomenon the constitutive relation becomes
for the in-plane shear stress component

N

_ 2
$12 = Soo,12 + Zgj,lz + o {eg 10 — €3) (16)
=1

with (x) = x if x > 0 and 0 if x < 0 and where o' and 83
are material parameters.
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4.4. ldentification

The large rotations of the yarns appear under in-
plane shearing and other loading do not lead to large
deformations. Therefore, the identification procedure
presented in this article only concerns the parameters
determined from cyclic in-plane shear test which is derived
from the standardized NF EN ISO 14129 monotonic in-
plane shear test.

All measurements are carried out in the global
coordinate system and provide:

- &x = s(f( ) the elongation in the centre of the coupon
according to the X direction,

- ¢y = 5(17 ) the elongation in the centre of the coupon
according to the Y direction,

- f= ]‘ - X the measured force applied to the coupon.

As aresult, the deformation gradient tensor F and the first
Piola-Kirchoff stress tensor IT are in the global frame

f

| l+ex O _ | =0

After a change of basis to be placed in the material frame
and by using the Eqgs. (9) and (11), the Lagrangian tensors
are determined and given by

£x — &7
&x — &y + 5

&2 e} + &2
ex +ey +

2 2
ey + &
1 8x+8y+%
Em:* 2_
Ex — &y +

(18)

_ f 11
= e 1] )

Hence, it becomes possible to identify the parameters of
the total Lagrangian behaviour law S = s(E).

The damage evolution law is determined through the
evolution of the shear stiffness on quasi-static tests and
without considering any viscoelastic effects. However in
the case of textile preforms and when the angle of locking
is reached, it becomes impossible to distinguish the effects
of the damage and of the shear locking. So after this critical
shear angle, the damage evolution law is approximated to
best fit the evolution of the residual strains. Indeed, the
model is formulated in such a way that the residual strains
are directly dependent on the damage variables. The gap in
the shear stiffness is eventually considered as be due to the
shear locking.

(b) 3K woven

(a) Non-Crimp Fabric

Figure 6. View of the upper face of the preforms.

The initial viscoelastic parameters are identifies
through Dynamic Mechanical Analysis (DMA) tests [13]
and the viscoelastic compliance tensors associated to the
damage variables are determined by an iterating process to
best fit the shear behaviour.

5. Numerical examples and discussions

The formulation proposed is illustrated by the simulation
of in-plane shear tests carried out on two different fabric
preforms.

Both are made up carbon fibres but the process to
get the fabric preforms differ. The first one is a Non-
Crimp Fabric (NCF) where the carbon fibre are arranged
in two uni-directional orthogonal plies and then stitched
together by a glass fibre tow (Fig. 6a). The second one is
a plain-weave preform made up interlaced yarn including
3000 fibres each (Fig. 6b).

The experimental tests are carried out by means of
a high-speed jack facility on coupons defined by the
standard NF EN ISO 14129. Three speed loadings were
set: 1.7 mm/s, 41 mm/s and 1000 mm/s. The shear strain
is measured by an optical extensometer. The reference is
taken as the mean value of the experimental results of a
given configuration.

The Fig. 7 shows the comparison between the
experimental results and the finite element analysis
results of in-plane shear tests on both fabric materials
at various strain-rate. The values are not stated because
of confidentiality reasons. The model correlates well the
material behaviours, even for completely different fabric
preforms.

6. Concluding remarks

In this paper, a finite strain damageable viscoelastic model
for fabric reinforced polymers has been presented.

The model is a combination between the Onera
Damage MicroStructure model and a generalised Maxwell
viscoelastic model. Because of the large rotation of the
yarns for shear loading, the model is extended in finite
strain. The total Lagrangian formulation is used for both
matrix damage and viscoelastic models in order to well
track the fibre orientation and ensure the objectivity.
Moreover, the damage variables can be shared between the
both element of the finite strain model. The phenomenon
of shear locking in the particular case of textile preforms is
also taking into account by a adding a non-linearity to the
elastic shear stiffness.
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Figure 7. Resultant stress-strain curves of in-plane shear test
simulation compared to experimental results at various strain-
rates.

From the numerical point of view, the model is
implemented in the commercial finite element software
LS-DYNA. It is validated through experimental tests
carried out at various strain-rate and reaching the loading
rate of 1 m/s. The simulation results show the good
efficiency of the proposed model.

However, in order to fully simulate the behaviour of
layered fabric composites, additional physical phenom-
enon have to be taking into account. Such is the case, for
instance, of the fibre failure or the intralaminar damage.
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