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ABSTRACT 

This paper presents a geometrical optimization of a heat sink modelled using three-dimensional CFD. The 
heat sink studied is circular with radial inlets and parallel fins. The parameters of the optimization are the 
different spacings between the fins. The optimization process is multi-objective and uses an aggregated 
objective function of both the thermal resistance and the pressure drop of the system. To perform the 
optimization, a relatively new technique has been used called Variable Neighbourhood Search (VNS). The 
optimization results give several interesting new geometries. In addition, the performances of VNS are 
measured with two criteria: the speed of convergence and the repeatability between two optimization runs. 
These performances are good compared to more traditional optimization techniques like Genetic Algorithms. 
 
Keywords: Heat sinks; Electronics cooling; Multi-ojective; Optimization; Heat transfer; CFD. 

NOMENCLATURE 

DP pressure drop  
d relative distance between the optimums  
 pressure coefficient 
f objective function 
fcount number of objective function evaluation 
k number of neighbourhoods 
P pressure  
Q volume flow rate  
R thermal resistance  
S surface of the inlet  
T temperature  
u velocity  
x fin spacing  
 
Greek letters 
α weigth coefficient 

λ thermal conductivity  
ρ density  
 heating power 
 
Superscipts 
* optimal 
 
Subscripts 
0 at the inlet 
base mean value at the base 
max maximum value 
mean mean value 
min minimum value 
Ref reference value 

1. INTRODUCTION 

Heat sinks are widely used for cooling electronic 
components. On car alternators, a heat sink is 
placed on the back of the machine to cool the 
rectifier bridge and it also allows air to enter the 
machine to cool the windings of the stator and the 
rotor. As a result, a well-designed heat sink should 
dissipate the heat produced by the electronic 
components but also should not affect the air flow. 

Its design is a multi-objective optimization problem 
with two objectives to minimize: the pressure drop 
of the system and its thermal resistance.  

Many studies can be found on the optimization of 
heat sinks, some recent examples are found in 
Karathanassiset al. (2013) and Lin et al. (2014). 
However, most of them use simple model for the 
heat sink and/or local optimization algorithms. In 
the first study (Karathanassis, 2013), the heat sink is 
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elementscreated by Mladenovicet al. (1997). From 
a random starting point in the optimization space, a 
local search is done to find a first local minimum. 
Around this minimum, a number k of 
neighbourhoods of growing sizes is built. In each 
neighbourhood, a local search is performed. If a 
new local minimum is found, a new set of 
neighbourhoods is built and the local searches 
restart. The process ends when all the 
neighbourhoods have been explored.  

The version of VNS used comes from Libertiet al. 
(2005) which allows constrained and non-linear 
optimization. The local search algorithm used is 
Sequential Quadratic Programming (SQP) which is 
directly implemented in Matlab®. The 
neighbourhoods are hyper-rectangles centred on the 
local minimum. The detailed algorithm of the 
method can be found below: 

VNS Algorithm 
Input: Maximum number of Neighbourhoodsk, 
Objective Function f 
Initialization: ݅ ←  1, pick a random point ݔand 
do a local search to find a local minimum ݔ∗. 

While i ≤ k, 

Create a Neighbourhood ௜ܰ(ݔ∗)  such 
that ௜ܰିଵ(ݔ∗) ⊂ ௜ܰ(ݔ∗) 

Take a random ݔ ∈ ௜ܰ(ݔ∗) 

Do a local search from ݔ to find a local 
minimum ݔ′ 
If݂(ݔ’) < ∗ݔthen(∗ݔ)݂ ← ← ݅ and ′ݔ  1 

else݅ ←  ݅ + 1 
End while 

Return ݔ∗ 

3.2. Objective function 

The optimization of the heat sink needs a 
multi-objectives approach. Both the thermal 
resistance and the pressure drop have to be taken 
into accountto be minimized. As a result, an 
Aggregated Objective Function (AOF) is built 
which is the weighted average of the thermal 
resistance and the pressure drop divided by the 
values of the reference geometry used for 
experimental validation. 

ref ref

R DP
f ( 1 )

R DP
                    (3) 

During the optimization several values of the 
weight coefficient ߙare used. For each ߙ, ten run 
will be tested with a different random starting point 
to test the performances and repeatability of the 
method.The best of the results is considered to be 
the global optimum. 

3.3. Evaluation of the method 

To evaluate the performances of two criteria are 
used. The first one is the number of evaluation of 
the objective function: ௖݂௢௨௡௧ . Each time the 
function needs to be evaluated a CFD computation 
has to be done. Therefore, the number of evaluation 
is a good measurement of time spent for the 
optimization. The second criterion is, for a fixed 
value of ߙ , the relative difference between the 
optimums and the best minimum: 

 *
min*

min

f x f
d ( x )

f


                    (4) 

Low values of ݀ఈ will ensure a good repeatability 
for the optimization method. 

4. RESULTS 

4.1. Optimal Geometries 

Optimization has been performed for seven values 
of α going from 0 (only the pressure drop is 
minimized) to 1 (only the thermal resistance is 
minimized). The spacing of the fins can vary from 
0.5 mm to 3.5 mm. All the results are compared to 
the reference geometry with constant 2 mm spacing 
which was used for the experimental validation (Fig. 
6.a).The different optimal geometry (Table 1) are 
represented in a Pareto front (Fig. 5). For a 
multi-objective optimization, the Pareto front shows 
the boundary between feasible and infeasible 
solutions.   

The first interesting solutions are the extreme values 
where only one objective is minimized. For the case 
where thermal resistance is minimized (α = 1). The 
geometry found (Fig. 6.b.) has very close fins. In 
the middle the spacing is minimum and increases 
slightly for the outer fins. This configuration 
reduces the thermal resistance by 20% compared to 
the reference. However, this solution is unrealistic 
as it almost triples the pressure drop of the design. 
As a result the aeraulic power needed to cool the 
system will also triple. This shows the necessity to 
include the pressure drop inside the optimization 
process to find realistic configurations. 

The case where pressure drop is minimized (α = 0) 
has an opposite geometry (Fig 6.c). The spacing 
between the fins is constant and equal to the 
maximum values possible (3.5 mm). This result 
seems to be consistent as a larger spacing will 
decrease the average velocity between the fins. This 
design decreases the pressure drop by 35% and only 
increases the thermal resistance by 8%. This design 
can be very interesting if the main concern of the 
designer is to reduce the costs of the ventilation 
system with only a slight impact on the temperature 
levels. 

Between the two extreme cases, the other cases can 
be regrouped in two categories. The ones improving 
only the pressure loss (0 <α ≤ 0.83) and the ones 
improving only the thermal resistance (0.86 ≤ α< 1). 
For the first group, the optimums are close to the  



P
 

 

c
l
s
α
r
p
3

T
s
s
f
b

T

4

I
t
T
g
T
o
b

4

A
p
o
o
s

P. Jandaud et al.

α 

0 
0.5 
0.75 
0.83 
0.86 
0.9 
1 

Fig. 4. Paret

case where DP 
large spacings th
spacing is alway
α=0.83. For a
resistance increa
pressure drop d
34%. 

The cases wher
shares similar 
spacings are sm
further from the 
be interesting. 

They improve t
10% and increa
43%. 

In these results,
thermal resistanc
This can be exp
geometry is clos
There is not m
optimums impro
be found for valu

4.2. Performa
method 

A statistical an
performed to m
optimization tec
only on four val
sample for the 

 /JAFM, Vol. 9

T࢞૚ ࢞૛ 

3.5 3.5 
3.5 3.5 
3.5 2.4 
2.7 3.0 
1.0 1.8 
1.3 1.1 
0.5 0.6 

to front of the d
solutions. 

is minimized. T
hat decrease as α
ys maximal exce
ll these geom
ases slightly from

decreases signific

re the thermal re
topologies (0.8

mall in the m
center. The two

the thermal res
ase the pressure

 no optimum w
ce and pressure 
lained by the fa
se to the optima

much room for 
oving both objec
ues of α between

ances of th

nalysis of the 
measure the pe
hnique. This ana
lues of α as we d

other values. 

, Special Issue 1

Table 1 Optimiz࢞૜ 

3.5 
3.5 
2.2 
2.3 
1.8 
1.7 
0.7 

different optima

The geometries h
α increases. The 
ept for the case 
etries, the ther
m 1% to 6% and
cantly from 20%

esistance is redu
86 ≤ α< 1). 

middle and incr
o geometries seem

sistance by 7% 
e drop by 25% 

which both impr
drop has been fo
ct that our refer
al solutions (Fig

improvement. 
ctives will prob
n 0.83 and 0.86

he optimizat

results have b
erformances of 
alysis has been d
did not have eno
The results can

1, pp. 31-37, 201

35 

zation Results (l࢞૝ ࢞૞
3.5 3.5
3.1 2.9
3.4 3.0
1.6 3.
1.8 2.5
1.9 1.9
1.0 1.0

 

al 

have 
first 
with 
rmal 
d the 
% to 

uced 
The 

rease 
m to 

and 
and 

oves 
ound. 
ence 

g. 5). 
The 

bably 

tion 

been 
f the 
done 
ough 
n be 

Fig. 
geom

found 
numbe
corres
averag
around
depen
case α
cases 

16.  

lengths in mm)

૞ ࢌ 

5 0.65 
9 0.86 
0 0.95 
1 0.97 
5 0.98 
9 0.96 
0 0.80 

5. ntours of tem
metry (a). the R-

the DP-opti

in table 2. The
er of function 
sponding to a C
ge number of ev
d 475. However
ding on the nat
α = 0, the optim
where thermal 

 ࢌࢋ࢘ࡾࡾ

1.08 
1.06 
1.03 
1.01 
0.93 
0.90 
0.80 

mperature for t
-optimized geom
mized geometry

e first indicator 
evaluation, ea

CFD calculation
aluation to find 

r, this number se
ture of the obje

mization seems f
resistance is op

 ࢌࢋ࢘ࡼࡰࡼࡰ

0.65 
0.66 
0.71 
0.80 
1.25 
1.43 
3.88 

 

 

 

he reference 
metry (b) and 
y (c). 

is the average 
ach evaluation 
n. Overall the 
an optimum is 

eems to change 
ective. For the 
faster than the 
ptimized. This 



P. Jandaud et al. /JAFM, Vol. 9, Special Issue 1, pp. 31-37, 2016.  
 

36 

difference is also present regarding the repeatability 
of the method. For α = 0, the optimum found is 
exactly the same between all the runs. When the 
thermal resistance is introduced in the objective, the 
results start to be more scattered. The case where 
the results are the more scattered is when α = 1, the 
maximum relative difference being 5.5%. 

Table 2 Performances of the optimization 
method for four values of α ࢞ࢇ࢓ࢻࢊ ࢔ࢇࢋ࢓ࢻࢊ ࢔ࢇࢋ࢓࢚࢔࢛࢕ࢉࢌ ࢻ 

0 374 0.0% 0.0% 

0.5 435 1.0% 2.1% 

0.75 570 0.5% 0.8% 

1 512 2.8% 5.5% 

These results can be explained by the fact that the 
pressure drop function has a clear minimum in our 
optimization space which is located directly on a 
boundary. On the contrary, thermal resistance 
seems to be very flat around the optimum. It causes 
the method to not converge properly. Instead of an 
optimal solution there is an optimal zone where the 
geometries are very close. 

5. CONCLUSIONS 

In the present study, a multi-objective methodology 
had been used to optimize a heat sink directly 
modelled by a three-dimensional CFD model. The 
method used for optimization was Variable 
Neighbourhood Search. The main objectives were 
to reduce the pressure drop and the thermal 
resistance of the system. 

A Pareto front of the optimal configurations has 
been obtained. The results showed that pressure 
drop could be increased up to 35% and thermal 
resistance reduced by 20%. However not including 
the pressure loss in the objectives gave unrealistic 
solution as it tripled it. We did not find any 
optimum improving both the thermal resistance and 
the pressure drop. 

The optimization methods showed good 
performance. Overall, the average number of CFD 
calculations was less than 500 for one optimization 
run. By comparison, on a problem with similar size 
(same number of parameters and same equations 
solved by CFD), Smolka (2013) obtained results 
after 1200 evaluations with genetic algorithm. This 
seems to show that VNS gives faster results than 
Genetic algorithms. Moreover, the precision of the 
method is good: the worst optimum found had a 
relative difference to the best element of 5%. 
Overall, between all the runs, the average value of 
this relative difference is less than 2%.In the future, 
this methodology will be used to design more 
complex and irregular heat sinks which needs more 
computational resources to model.  
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