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ABSTRACT

This paper presents a geometrical optimization of a heat sink modelled using three-dimensional CFD. The
heat sink studied is circular with radial inlets and parallel fins. The parameters of the optimization are the
different spacings between the fins. The optimization process is multi-objective and uses an aggregated
objective function of both the thermal resistance and the pressure drop of the system. To perform the
optimization, a relatively new technique has been used called Variable Neighbourhood Search (VNS). The
optimization results give several interesting new geometries. In addition, the performances of VNS are
measured with two criteria: the speed of convergence and the repeatability between two optimization runs.
These performances are good compared to more traditional optimization techniques like Genetic Algorithms.

Keywords: Heat sinks; Electronics cooling; Multi-ojective; Optimization; Heat transfer; CFD.

NOMENCLATURE
DP  pressure drop A thermal conductivity
d relative distance between the optimums p density
pressure coefficient ) heating power
f objective function
feouns  number of objective function evaluation Superscipts
k number of neighbourhoods * optimal
P pressure
Q volume flow rate Subscripts
R thermal resistance 0 at the inlet
S surface of the inlet base mean value at the base
T temperature max maximum value
u velocity mean  mean value
X fin spacing min minimum value
Ref reference value

Greek letters
o weigth coefficient

1. INTRODUCTION

Heat sinks are widely used for cooling electronic
components. On car alternators, a heat sink is
placed on the back of the machine to cool the
rectifier bridge and it also allows air to enter the
machine to cool the windings of the stator and the
rotor. As a result, a well-designed heat sink should
dissipate the heat produced by the -electronic
components but also should not affect the air flow.

Its design is a multi-objective optimization problem
with two objectives to minimize: the pressure drop
of the system and its thermal resistance.

Many studies can be found on the optimization of
heat sinks, some recent examples are found in
Karathanassiset al. (2013) and Lin er al. (2014).
However, most of them use simple model for the
heat sink and/or local optimization algorithms. In
the first study (Karathanassis, 2013), the heat sink is
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modelled using an equivalent thermal resistance
network. The geometry is simple and flow rates
distribution inside the heat sink has to be known to
obtain the different convective heat transfer
coefficient needed. The optimization method used is
a genetic algorithm which needs around
10%evaluation of the objective to reach an optimum
for three design parameters. In the second study
(Lin 2014), a three-dimensional CFD model is used
for optimization. Only one channel of the heat sink
is modelled.The flow is laminar and the grid used
has approximately 150 000 elements. Optimization
is performed using a conjugate-gradient method
which gives only local optimums but three different
starting points were tested.

In industrial applications, the geometries of the heat
sinks can be complex: the fins are not necessarily
parallel or straight, the flow distribution is not
necessarily uniform... To numerically study these
heat sinks, complex three-dimensional CFD models
are needed. Each time an evaluation of the objective
is needed in the algorithm, a CFD run has to
bedone.Therefore, optimization becomes more
time-consuming and the optimization method
should be chosen carefully.

In the field of optimization, two main families of
method exist. The first kind of algorithms are based
on gradient methods and suited for local
optimization of continuous function. The second
kind isstochastic algorithms based on the evolution
of a population like Genetic Algorithms and Particle
Swarm Optimization(Kennedy ez al. 1995). These
methods are the most popular in heat transfer
engineering (Gosselinet al, 2008) due to their global
aspect and their simplicity in
implementation.However,  they can  require
extensive numerical resources. Some examples of
their use in thermal problems can be found in
Bornschlegellet al. (2012) and Jandaudet al. (2012).
In these two studies, the optimization is performed
on simple lumped method based model. Three
studies by Smolka (2013), Kim et al/ (2007) and
Vasudevet al (2014) shares similarities. They
couplegenetic algorithms and a 3D CFD model and
use around five optimization parameters. In these
studies, due to the numerical cost of the
computations, the optimization process is stopped
after a set number of generations and the results are
assumed to be the global optima. The main problem
is the user of the method has to know a priori the
right number of generations and the size of the
population for his case. An underestimated value of
these parameters can give a non-optimal result and
an overestimated value will result in wasted
numerical resources.

In this paper, the optimization process is performed
using a  metaheuristic called  Variable
Neighbourhood Search (VNS) created by
Mladenovicet al. (1997). This method is a hybrid
between gradient based methods and stochastic
metaheuristics. It creates a series of neighbourhoods
of growing sizes around a potential optimum. In

each of these neighbourhoods, a local search is done.

If a better optimum is found, a new set of
neighbourhoods is created and the previous steps

32

are repeated until a stopping criterion is met. This
method is less time consuming than population
based algorithm: at each generation it focuses only
on one point instead of a whole population. This
method is more and more used in a wide variety of
fields (Mladenovicet al. 2010). The variant of VNS
used in this paper has been proposed by Libertiet al.
(2005) and is fitted for global continuous
optimization of constrained non-linear problems.

The aim of this article is to set a methodology to use
global optimization with a 3D CFD model with
relatively low computational time. The method
chosen is VNS and it is tested on a simple version
of a car alternator heat sink modelled using Fluent®.
The optimization parameters are the spacing of the
fins and the two objectives are to reduce the thermal
resistance and/or the pressure drop of the heat sink.

2. CFD MODEL
2.1. Model Description

The geometry studied is a simpler version of the
heat sinks used in car alternators. The base is
circular with an open gap in the middle. Twelve heat
sources are placed directly on the bottom of the
base under the fins. Four groups of eleven parallels
fins are disposed on the base. The fins and the base
are in aluminum (1 = 120 W.m' K"). A plastic
hood covers the heat sink and forces the air flow to
enter radially in front of the fins and to exit axially
in the centre.Due to symmetries, only one eighth of
the geometry is modelled (Fig. 1). The numerical
domain reproduces our test bench for the heat sinks
of alternators (Figs 1 and 2). The heat sink and its
plastic hood are placed on a circular pipe. The air
flow is created with an exhaust fan placed at the
outlet of the pipe. The maximum total volume flow
rate is 12 L/s which correspond to a Reynolds
number of 21600.

Velocity Inlet

Adizabatic Wall

] Symmetry
Heated Ease

Fig. 1. General view of the domain.

The model uses Reynolds Averaged Navier-Stokes
(RANS) equations coupled with the Energy
Equation to solve the problem. The turbulence
model chosen is k-@ SST which is well suited for
low-Reynolds turbulent flow. The equations are
solve with Fluent® using second orderdiscretization
schemes. The mesh used is fully hexahedral with
approximately 350000 elements.
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Velacity Infet —=
Velocity Infet

Fig. 2. Dimensions (in mm) of the domain.

The surface mesh on the heat sink can be seen on
fig 1. At maximum velocity, the average value of
y"on the heat sink is 1.5.

2.2. Boundary Conditions

At the inlet, the flow enters the heat sink with a
temperature of 300 K and a constant velocity:

uy=0/8 M
At the outlet, the pressure is kept equal to
atmospheric pressure. The sides of the domain are
symmetries. The walls corresponding to the plastic
hood are considered adiabatic. At the base, to
represent the heating of electronic components, the
heat sources are circular with a diameter of 13 mm
with a heating power of 11 W per component

(Fig .3).
o (W, ’J’i._;“:,)

i

Fig. 3. Heat Flux repartition at the base of the
heat sink.

2.3. Mesh Parameterization

In order to be able to perform optimization on this
model, the mesh has to be parameterized. Our
parameters are the different spacings of the fins x;
(fig 1). To improve the flow distribution in the
channels between the fins, the size of the inlet
changes also according to the spacings of fins. The
edge of the inlet is aligned with the last fin. As a
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result, the velocity at the inlet changes with the fins
spacings. The different spacings can vary from 0.5
mm to 3.5 mm. The grid generation, the solver and
the post-processing are controlled by Matlab®
scripts to be able to use optimization.

2.4. Experimental Validation

To validate the results of our numerical a reference
heat sink has been tested has been tested
experimentally. The reference has a constant
spacing of 2 mm between each fin. The heat flux is
controlled at the base with circular electric
resistances. The temperature at each resistance is
measured with a type K thermocouple. The power
of the fan is variable and allows the flow rate to
vary from 2 to 12 L/s. The comparison is between
the experimental and numerical thermal resistance.
It is calculated by dividing the temperature by the
heating power:

R= Tba:e — T(J

s @

The results (Fig. 4) show a good agreement between
experimental and numerical results. For the volume
flow rates over 4 L/s, the relative difference does
not exceed 5%. For the lowest flow rate, the relative
difference increases to 16%. This difference can be
explained by the fact that at low speed the flow is
less turbulent and more in a transitional state
between laminar and turbulent. Therefore, the
turbulent model k- SST may not be valid anymore.
For the optimization study, the flow is kept constant
at 10 L/s in the zone showing good agreement bet
experimental and numerical results.

Q\ —+—Experimental
0.45 \

-k SST

o
s

0.35¢

Thermal Resistance (K/W)
o
w2

o
%3
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02 4 6 8 10
Flow Rate (L/s)

Fig .4. Experimental and numerical results for
the Thermal Resistance.

3. OPTIMIZATION

METHODOLOGY
3.1. Variable Neighbourhood Search

Variable NeighbourhoodSearch (VNS) is a hybrid
optimization method combining local
gradient-based search and stochastic
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elementscreated by Mladenovicet al. (1997). From
a random starting point in the optimization space, a
local search is done to find a first local minimum.
Around this minimum, a number k& of
neighbourhoods of growing sizes is built. In each
neighbourhood, a local search is performed. If a
new local minimum is found, a new set of
neighbourhoods is built and the local searches
restart. The process ends when all the
neighbourhoods have been explored.

The version of VNS used comes from Libertiet al.
(2005) which allows constrained and non-linear
optimization. The local search algorithm used is
Sequential Quadratic Programming (SQP) which is
directly  implemented in  Matlab®.  The
neighbourhoods are hyper-rectangles centred on the
local minimum. The detailed algorithm of the
method can be found below:

VNS Algorithm

Input: Maximum number of Neighbourhoodsk,
Objective Function f

Initialization: i « 1, pick a random point xand
do a local search to find a local minimum x*.

While i <k,

Create a Neighbourhood N;(x*) such
that N;_;(x*) c N;(x*)

Take a random x € N;(x*)

Do a local search from x to find a local
minimum x’

Iff(x) < f(x*)thenx* < x'" and i « 1

elsei « i+1

End while
Return x*

3.2. Objective function

The optimization of the heat sink needs a
multi-objectives approach. Both the thermal
resistance and the pressure drop have to be taken
into accountto be minimized. As a result, an
Aggregated Objective Function (AOF) is built
which is the weighted average of the thermal
resistance and the pressure drop divided by the
values of the reference geometry used for
experimental validation.

f=aL y(1-a) P

ref

b (€)

During the optimization several values of the
weight coefficient aare used. For each a, ten run
will be tested with a different random starting point
to test the performances and repeatability of the
method.The best of the results is considered to be
the global optimum.
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3.3. Evaluation of the method

To evaluate the performances of two criteria are
used. The first one is the number of evaluation of
the objective function: f.yyn: - Each time the
function needs to be evaluated a CFD computation
has to be done. Therefore, the number of evaluation
is a good measurement of time spent for the
optimization. The second criterion is, for a fixed
value of «a, the relative difference between the
optimums and the best minimum:

f(X*)_fmin
fmin

Low values of d, will ensure a good repeatability
for the optimization method.

dy(x )= )

4. RESULTS

4.1. Optimal Geometries

Optimization has been performed for seven values
of o going from 0 (only the pressure drop is
minimized) to 1 (only the thermal resistance is
minimized). The spacing of the fins can vary from
0.5 mm to 3.5 mm. All the results are compared to
the reference geometry with constant 2 mm spacing
which was used for the experimental validation (Fig.
6.2).The different optimal geometry (Table 1) are
represented in a Pareto front (Fig. 5). For a
multi-objective optimization, the Pareto front shows
the boundary between feasible and infeasible
solutions.

The first interesting solutions are the extreme values
where only one objective is minimized. For the case
where thermal resistance is minimized (a = 1). The
geometry found (Fig. 6.b.) has very close fins. In
the middle the spacing is minimum and increases
slightly for the outer fins. This configuration
reduces the thermal resistance by 20% compared to
the reference. However, this solution is unrealistic
as it almost triples the pressure drop of the design.
As a result the aeraulic power needed to cool the
system will also triple. This shows the necessity to
include the pressure drop inside the optimization
process to find realistic configurations.

The case where pressure drop is minimized (o = 0)
has an opposite geometry (Fig 6.c). The spacing
between the fins is constant and equal to the
maximum values possible (3.5 mm). This result
seems to be consistent as a larger spacing will
decrease the average velocity between the fins. This
design decreases the pressure drop by 35% and only
increases the thermal resistance by 8%. This design
can be very interesting if the main concern of the
designer is to reduce the costs of the ventilation
system with only a slight impact on the temperature
levels.

Between the two extreme cases, the other cases can
be regrouped in two categories. The ones improving
only the pressure loss (0 <a < 0.83) and the ones
improving only the thermal resistance (0.86 < a< 1).
For the first group, the optimums are close to the
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Table 1 Optimization Results (Iengths in mm)

R DpP
a X X X X, X
1 2 3 4 5 f Rref DPref
0 3.5 35 35 35 35 0.65 1.08 0.65
0.5 3.5 3.5 35 3.1 2.9 0.86 1.06 0.66
0.75 3.5 2.4 2.2 34 3.0 0.95 1.03 0.71
0.83 2.7 3.0 23 1.6 3.1 0.97 1.01 0.80
0.86 1.0 1.8 1.8 1.8 2.5 0.98 0.93 1.25
0.9 1.3 1.1 1.7 1.9 1.9 0.96 0.90 1.43
1 0.5 0.6 0.7 1.0 1.0 0.80 0.80 3.88
4
a5 [ —’e—gguhn;arlcceonflg urations
3 Iempe'u'ure: w0
av 25 il
% 2 |335
15 " g
lam
i & 322
988 085 08 098 i 106 i1

R!Rm'

Fig. 4. Pareto front of the different optimal
solutions.

case where DP is minimized. The geometries have
large spacings that decrease as o increases. The first
spacing is always maximal except for the case with
0=0.83. For all these geometries, the thermal
resistance increases slightly from 1% to 6% and the
pressure drop decreases significantly from 20% to
34%.

The cases where the thermal resistance is reduced
shares similar topologies (0.86 < a< 1). The
spacings are small in the middle and increase
further from the center. The two geometries seem to
be interesting.

Temparature (K)

as1
'W

342

They improve the thermal resistance by 7% and
10% and increase the pressure drop by 25% and
43%.

33
80
In these results, no optimum which both improves
thermal resistance and pressure drop has been found.
This can be explained by the fact that our reference
geometry is close to the optimal solutions (Fig. 5).
There is not much room for improvement. The Fig. 5. ntours of temperature for the reference

optimums improving both objectives will probably geometry (a). the R-optimized geometry (b) and
be found for values of a between 0.83 and 0.86 the DP-optimized geometry (c).

324
a2

4.2. Performances of the optimization ) o )
method found in table 2. The first indicator is the average

number of function evaluation, each evaluation
corresponding to a CFD calculation. Overall the

A statistical analysis of the results have been average number of evaluation to find an optimum is
performed to measure the performances of the around 475. However, this number seems to change
optimization technique. This analysis has been done depending on the nature of the objective. For the
only on four values of a as we did not have enough case a = 0, the optimization seems faster than the
sample for the other values. The results can be cases where thermal resistance is optimized. This
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difference is also present regarding the repeatability
of the method. For a = 0, the optimum found is
exactly the same between all the runs. When the
thermal resistance is introduced in the objective, the
results start to be more scattered. The case where
the results are the more scattered is when o = 1, the
maximum relative difference being 5.5%.

Table 2 Performances of the optimization
method for four values of o

a fcauntmean Amean dllmax

0 374 0.0% 0.0%
0.5 435 1.0% 2.1%
0.75 570 0.5% 0.8%

1 512 2.8% 5.5%

These results can be explained by the fact that the
pressure drop function has a clear minimum in our
optimization space which is located directly on a
boundary. On the contrary, thermal resistance
seems to be very flat around the optimum. It causes
the method to not converge properly. Instead of an
optimal solution there is an optimal zone where the
geometries are very close.

5. CONCLUSIONS

In the present study, a multi-objective methodology
had been used to optimize a heat sink directly
modelled by a three-dimensional CFD model. The
method used for optimization was Variable
Neighbourhood Search. The main objectives were
to reduce the pressure drop and the thermal
resistance of the system.

A Pareto front of the optimal configurations has
been obtained. The results showed that pressure
drop could be increased up to 35% and thermal
resistance reduced by 20%. However not including
the pressure loss in the objectives gave unrealistic
solution as it tripled it. We did not find any
optimum improving both the thermal resistance and
the pressure drop.

The optimization methods showed good
performance. Overall, the average number of CFD
calculations was less than 500 for one optimization
run. By comparison, on a problem with similar size
(same number of parameters and same equations
solved by CFD), Smolka (2013) obtained results
after 1200 evaluations with genetic algorithm. This
seems to show that VNS gives faster results than
Genetic algorithms. Moreover, the precision of the
method is good: the worst optimum found had a
relative difference to the best element of 5%.
Overall, between all the runs, the average value of
this relative difference is less than 2%.1In the future,
this methodology will be used to design more
complex and irregular heat sinks which needs more
computational resources to model.
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