Abstract : Developing novel strategies to improve the impact strength of PLA-based materials is gaining a significant importance in order to enlarge the range of applications for this renewable polymer. Recently, the authors have designed ultra-tough polylactide (PLA)-based materials through co-addition of rubber-like poly(ϵ-caprolactone-co-d,l-lactide) (P[CL-co-LA]) impact modifier and silica nanoparticles (SiO2) using extrusion techniques. The addition of silica nanoparticles into these immiscible PLA/P[CL-co-LA] blends altered their final morphology, changing it from rubbery spherical inclusions to almost oblong structures. A synergistic toughening effect of the combination of P[CL-co-LA] copolymer and silica nanoparticles on the resulting PLA-based materials therefore occurred. To explain this particular behavior, the present work hence aims at establishing the mechanistic features about the nanoparticle-induced impact enhancement in these immiscible PLA/impact modifier blends. Incorporation of silica nanoparticles of different surface treatments and sizes was thereby investigated by means of rheological, mechanical and morphological methods in order to highlight the key parameters responsible for the final impact performances of the as-produced PLA-based materials. Relying on video-controlled tensile testing experiments, a toughening mechanism was finally proposed to account for the impact behavior of resulting nanocomposites.
https://hal-uphf.archives-ouvertes.fr/hal-03450915 Contributor : Mylène DelrueConnect in order to contact the contributor Submitted on : Friday, April 22, 2022 - 11:59:38 AM Last modification on : Monday, April 25, 2022 - 2:02:55 PM Long-term archiving on: : Saturday, July 23, 2022 - 6:31:11 PM