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Abstract

Automatic program repair papers tend to repeatedly use the same benchmarks. This poses a threat to the external validity of the
�ndings of the program repair research community. In this paper, we perform an empirical study of automatic repair on a benchmark
of bugs called QuixBugs, which has been little studied. In this paper, 1) We report on the characteristics of QuixBugs; 2) We study
the e� ectiveness of 10 program repair tools on it; 3) We apply three patch correctness assessment techniques to comprehensively
study the presence of over�tting patches in QuixBugs. Our key results are: 1) 16/40 buggy programs in QuixBugs can be repaired
with at least a test suite adequate patch; 2) A total of 338 plausible patches are generated on the QuixBugs by the considered
tools, and 53.3% of them are over�tting patches according to our manual assessment; 3) The three automated patch correctness
assessment techniques,RGTEvosuite, RGTInputS amplingandGTInvariants, achieve an accuracy of 98.2%, 80.8% and 58.3% in over�tting
detection, respectively. To our knowledge, this is the largest empirical study of automatic repair on QuixBugs, combining both
quantitative and qualitative insights. All our empirical results are publicly available on GitHub in order to facilitate future research
on automatic program repair.

Keywords: Automatic program repair; Patch correctness assessment; Bug benchmark

1. Introduction

Automatic program repair aims to provide �xes to software
bugs in an automated way. Test suite based repair, notably in-
troduced by GenProg [1], is a widely studied family of tech-
niques in program repair. In test suite based repair, test suites
are used as an executable speci�cation of the program, with
at least one failing test that reveals the bug. Test suite based
repair can be further divided into generate-and-validate tech-
niques and synthesis-based techniques. Generate-and-validate
techniques, such as GenProg [1], Astor [2], CapGen [3], �rst
generate as many patches as possible and then use the test suite
to validate if the patch makes all tests pass. On the other hand,
synthesis-based techniques such as AutoFix [4], SemFix [5],
and Nopol [6] �rst extract constraints based on test suite execu-
tion and then synthesize a patch [7, 8].

Recent automatic program repair papers tend to repeatedly
use the same benchmarks. In program repair for C code, the
ManyBugs [9] benchmark or its derivative is dominant. In the
context of program repair for Java, Defects4J [10] is used in
almost all evaluations of recent program repair approaches, in-
cluding recently [11, 3, 12]. However, repeatedly using the
same benchmarks poses a threat to the external validity of the
community's knowledge. The main threat is that the improve-
ment that we now observe in the literature may only be valid
for the benchmark under consideration but would not hold for
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other benchmarks. Even worse, those claimed improvements,
if they only hold on the benchmark, maybe decorrelated from
for real usages by practitioners. Fortunately, the importance of
external validity is acknowledged by many researchers.

Problem: Research on program repair tends to repeatedly
use the same benchmarks. This is a threat to the external valid-
ity of the results of our research community.

As building sound and conclusive empirical knowledge is
key to science, reducing this major threat of external validity in
the context of program repair is the main motivation of this pa-
per. To reduce the threat, we aim at doing a empirical program
repair study on a new and well-formed bug benchmark.

In this paper, we perform an automatic repair empirical study
on a benchmark called QuixBugs which was recently presented
by Lin et al. [13]. QuixBugs is a program repair benchmark
with 40 buggy algorithmic programs speci�ed by test cases.
The buggy programs are both available in Python and Java.
In this paper, we conduct the following four experiments on
Quixbugs: 1) We prepare QuixBugs for automatic program
repair in Java; 2) We select ten representative test suite based
repair tools, Arja [14], Cardumen [15], Dynamoth [16], JGen-
Prog [2], JMutRepair [2], JKali [2], Nopol [6], NPEFix [17],
Tibra [2], and the Java implementation of RSRepair [18], and
execute them over all buggy programs of QuixBugs. This re-
sults in 16/40 buggy programs being repaired by 338 di� erent
plausible patches; 3) We perform manual assessment for the
generated plausible patches and manually classify them as 158
correct patches and 180 over�tting patches; 4) We assess the
correctness of the plausible patches by three automated patch
correctness assessment techniques:RGTEvosuite, RGTInputS ampling
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andGTInvariants. We compute the accuracy of these three auto-
mated techniques are 98.2%, 80.8% and 58.3%, respectively.

This novel empirical study on a benchmark never used in a
program repair context provides valuable �ndings that improve
the external validity of program repair research. Our empirical
study sets a baseline for future research of automatic program
repair on QuixBugs.

To sum up, our contributions are:

ˆ A new version of QuixBugs that is usable for automatic
repair research on Java programs, together with extensive
data about the characteristics of QuixBugs.

ˆ The con�rmation of two empirical facts of program re-
pair, improving their external validity:1) Our manual
assessment shows that 53.3% of generated patches are
over�tting, this con�rms that the state-of-the-art of pro-
gram repair tools produces a large number of over�tting
patches [19, 20, 21];2) Our empirical study shows the
considered automatic program repair tools are able to cor-
rectly repair seven buggy programs, this con�rms the state-
of-the-art program repair tools also produce correct patches
[18, 22].

ˆ Three new and important �ndings about automatic pro-
gram repair:1) Certain program repair tools are able to
repair programs with only failing test cases and no pass-
ing tests at all;2) It is feasible and e� ective to use auto-
mated patch assessment techniques to identify over�tting
patches with an accuracy of up to 98.2%;3) Invariants
based patch assessment su� ers from a large number of
false positives.

ˆ Experimental data that is made publicly available for fa-
cilitating future research [23]. Our 338 plausible patches
on QuixBugs and their correctness labels are consolidated
for future studies on program repair.

This paper supersedes a previous version [24] presented at
theInternational Workshop on Intelligent Bug Fixing. In com-
parison, this article makes the following extensions. The pro-
gram repair empirical study involves ten repair tools (expand-
ing from �ve in the previous version). This new work presents
and discusses the 338 plausible patches versus only 64 patches
discussed in the previous version. This study considers a third
automated patch assessment technique based on invariants. To
our knowledge, this technique has only been studied by Yang
and Yang [25], and at a smaller scale (our dataset of patches is
three times larger than that of [25] – 338 versus 96). This jour-
nal extension provides novel results that compare the accuracy
of three assessment techniques and discuss the false positive
problem of invariants based patch correctness assessment, both
of which have never been reported before.

The remainder of this paper is organized as follows. Sec-
tion 2 presents how we prepare a new version of QuixBugs
for the usage of automatic repair for Java programs. Section 3
presents four research questions (RQs) of our study and corre-
sponding methodologies for these RQs. Section 4 presents our
empirical results to answer the RQs. Section 5 analyzes the

threat of our study. Section 6 discusses the new �ndings of us-
ing QuixBugs and the future improvements for program repair
tools. Section 7 compares the related work of our study and
we conclude our study in Section 8.

2. Benchmark preparation

QuixBugs by Lin et al. [13] is a benchmark of 40 bugs from
40 classic algorithms such as sorting algorithms ofbucket sort,
merge sort and quick sort. All bugs of QuixBugs were collected
from theQuixey Challenges[26], which consisted of giving hu-
man developers one minute to �x one program with a bug on a
single line. The original QuixBugs benchmark contains:1) A
set of 40 buggy programs available both in Python and in Java;
2) For 31 out of 40 programs: JSON �les with a set of inputs
and expected outputs for each program;3) An engine that takes
a program name, executes the program using the inputs from the
corresponding JSON �le, and prints the expected and obtained
output;4) For the remaining 9 out of 40 programs, a Java class
that has encoded the inputs and outputs and prints the obtained
output.

However, the initial version of QuixBugs was not usable for
doing automatic program repair in Java. Monperrus [7] states
that, in the context of test suite based repair, a “usable” bench-
mark must have [27]:1) A clear, explicit, and not biased con-
struction methodology;2) Regression oracles. For test suite
based repair approaches such as GenProg [1] the oracles are the
test suites: the failings test cases are the bugs oracles and as-
sert the presence of a bug, while the passing test cases are the
regression test cases that assert the correctness of the program
w.r.t the inputs-outputs encoded in the test suite;3) Real bugs
(i.e., not seeded).

Unfortunately, the initial version of QuixBugs does not ful-
�ll some of the aforementioned criteria. We summarize the
problems of the initial version of QuixBugs as:1) It did not
provide any regression oracle, this not ful�ll the second re-
quirement of a usable benchmark (bugs and regression oracles);
2) Programs contained compilation errors (for 5 programs), this
does not satisfy the �rst requirement of a usable benchmark (a
clear, explicit and not biased construction methodology);3) In-
correct values to test buggy programs (for 3 programs), which
also not ful�ll the �rst requirement of a usable benchmark;
4) Missing test assertions (for 9 programs), this violates the sec-
ond requirement of a usable benchmark;5) Missing a ground
truth Java version (for all programs), without the ground truth
patches provided, the correctness assessment of generated patches
is harder.

To overcome the mentioned limitations that hamper its use
by test suite based repair approaches, we introduce a new ver-
sion of QuixBugs supplemented with test cases for reproduc-
ing buggy behaviors and a ground truth version for evaluating
automatic repair patches. This new version of QuixBugs was
already peer-reviewed and accepted by the QuixBugs authors
and integrated to their public repository at GitHub. The steps
we carried out for creating the new version are:

1) Fix uncompilable Java programs. By compiling the ini-
tial version Java programs of QuixBugs, we noticed that there
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were compile errors in some programs (e.g.,BREADTHFIRST
SEARCH). Some compilation errors were designed as part of
buggy programs. However, most automatic repair tools do dy-
namic analysis of buggy programs. Hence, we need them all to
be compilable and able to run the original buggy programs.

2) Fix incorrect test data. To test 31 out of 40 buggy Java
programs, QuixBugs provides pairs of inputs and expected out-
puts written in JSON �les. However, we found that some ex-
pected outputs from programsKNAPSACK, SQRTandPASCAL
were incorrect. Once we detected all incorrect inputs and out-
puts, we corrected them.

3) Creation of JUnit tests from JSON �les. QuixBugs uses
a speci�c test driver based on JSON test cases. It executes the
program using the inputs, and prints both the expected and ac-
tual outputs. However, automatic repair tools usually expect
JUnit tests as oracle speci�cations: each test executes the pro-
gram passing the inputs via parameters and then compares the
obtained output with that one expected via assertions. Thus, we
implement an automatic JUnit test generator to generate JUnit
tests from the JSON �les. In total, we generated 224 JUnit tests
(test methods in JUnit) for the 31 programs having their inputs-
outputs encoded in the JSON �les.

4) Creation of JUnit tests from ad-hoc assertion-less tests.
There are 9 out of 40 Java programs from QuixBugs that are
tested through a simple ad-hoc main method that starts with
encoded inputs, calls the program using them as arguments, and
�nally prints the obtained output. This method is not usable by
a test suite based program repair tool. Thus, we have manually
rewritten those methods to produce 35 JUnit tests for these 9
programs. In total, our preparation has resulted in 259 JUnit
test methods over 40 programs.

5) Creation of ground truth Java programs. By default,
the QuixBugs does not provide a ground truth version for the
Java buggy programs. Automatic program repair researchers
need those ground truths to compare them with the generated
patches to assert their correctness. We created ground truth ver-
sions based on those provided by QuixBugs originally written
in Python.

To summarize, QuixBugs was initially not usable for auto-
matic repair tools in Java. In this section, we presented the tasks
we carried out to build a new version of QuixBugs that can be
used to evaluate the e� ectiveness of the test suite adequate re-
pair tools. The new version of QuixBugs contains JUnit test or-
acles and ground truth programs, it was public peer-reviewed by
the QuixBugs authors, organized with Travis and Gradle com-
ponents. All those changes have already been contributed to the
research community on the QuixBugs repository.

3. Empirical Study

We now present our empirical study on the e� ectiveness of
test suite based repair approaches on the QuixBugs benchmark.
The empirical study covers several dimensions of automatic re-
pair: benchmark analysis, repair e� ectiveness, patch correct-
ness assessment. First, we list the research questions (RQs) of
our work, we then describe the research methodology for each
RQ.

3.1. Research Questions

For this empirical study on program repair for QuixBugs,
we pose the following research questions (RQs):

ˆ RQ1: What are the main characteristics of the QuixBugs
benchmark?

ˆ RQ2: How many buggy programs of QuixBugs can be
automatically repaired with test suite adequate patches?

ˆ RQ3: To what extent are the generated patches for QuixBugs
correct?

ˆ RQ4: To what extent do automated patch assessment tech-
niques accurately classify over�tting patches?

In RQ1, we are interested in the statistics of QuixBugs, in-
cluding the type of bug, lines of code (LOC), JUnit tests, code
coverage, etc. In RQ2, we consider one kind of automatic re-
pair called test suite based repair. In test suite based repair, a
bug is said to be repaired if a patch makes all tests pass. In that
case, such a patch is calledtest suite adequate patchor plausi-
ble patch. We focus on how many test suite adequate patches
could be generated by the state-of-the-art test suite based repair
approaches. In RQ3, we conduct a manual assessment to eval-
uate how many patches generated in the experiment of RQ2 are
actually correct. Finally, in RQ4, we study the e� ectiveness of
three techniques to automatically classify correct and over�t-
ting patches, and we compare their results with those from the
manual assessment.

3.2. Protocols

This section presents the protocols of our empirical study of
automatic program repair on QuixBugs.

3.2.1. RQ1: QuixBugs Benchmark Analysis
Bug understanding [28] is important for designing program

repair tools and to analyzing the e� ectiveness of those tools.
For each buggy program of QuixBugs, we gather and compute
the following information:

Types of bugs.The previous research reports the existence of
the observational correlation between the bug �x and the cause
of bugs [29]. In our study, we collect and present the type of
bug. QuixBugs contains various types of bugs such as incorrect
comparison operators, incorrect array slice, etc. This allows us
to analyze the capability of the program repair tools to repair
buggy programs and to determine the most repaired bug types.

Numerical characteristics.We compute numerical character-
istics: the lines of code (LOC) of the program, the number of
passing JUnit tests, failing JUnit tests, the test execution time
and branch coverage. We rely on Cobertura1 to calculate the
branch coverage for each program.

1Cobertura website:http://cobertura.github.io/cobertura/ (vis-
ited September 29, 2020)
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Input domain. We extract the program preconditions and the
input domain of each program. The program preconditions are
constraints for the input domain. We discuss this to remind the
future work on QuixBugs to sample tests that should be aware
of the program preconditions.

Failures types.We manually collect the failure symptoms when
executing test cases for each buggy program of QuixBugs dataset.
A bug can produce:1) An incorrect output that triggers an as-
sertion fail; 2) An error in the execution (e.g., array index er-
ror); 3) An exception thrown by the program (e.g., null pointer
exception or stack over�ow);4) A timeout/in�nite loop.

Unique characteristics.We discuss the unique characteristics
of the QuixBugs dataset compared with the benchmarks from
the literature.

3.2.2. RQ2: Repairability of QuixBugs
To conduct our program repair empirical study on QuixBugs,

we �rst select appropriate program repair tools. For this, we
consider three criteria:1) The repair tool must handle Java pro-
grams as QuixBugs programs are written in this programming
language1; 2) The repair tool must implement a test suite based
repair approach;3) The repair tool must be publicly-available
and continuously maintained.

According to these criteria, we �nally select ten of program
repair tools: Arja [14], JGenProg [2], JKali [2], JMutRepair [2],
Cardumen [15], Tibra [2], Nopol [6], Dynamoth [16], NPE-
Fix [17] and the Java implementation of RSRepair [18] by [14].
The ten repair tools target Java programs, are test suite based,
and are publicly available on GitHub. All the ten repair tools
take as input the source code of a buggy program and the corre-
sponding test suite which contains at least one failing test case,
and generate, when it's possible, one or more patches that make
all test cases pass. We combine the patches generated during
our empirical study in [13] with patches generated from our re-
cent work [30]. Each of the ten repair tools has been executed
on all QuixBugs programs. We do not stop the repair pro-
cess after �nding the �rst patch, and we consider all generated
patches, even if there are several patches for the same bug.

We carefully record and discuss:1) The number of bugs
that are repaired by the considered 10 systems;2) The bug types
of the repaired programs;3) How test cases impact the repair
tools;4) The test failure symptoms of repaired programs.

3.2.3. RQ3: Manual Patch Correctness Assessment
Previous works have shown that program repair tools tend

to generate a large number of over�tting patches (i.e., �awed re-
pairs). In our work, per the previous terminology [20, 12, 31],
we use the term over�tting to refer to those patches that pass
all human-written test cases (i.e., test suite adequate patch) but
still do not correctly repair the bug. Those �awed repairs are
produced because of the weaknesses of the test suite used as

1Note, QuixBugs also contains Python implementation of those bugs, how-
ever we focus on the Java implementations since few repair tools are available
for Python.

an oracle, which is not able to completely specify the expected
program behavior. To assess the correctness of patches gen-
erated for Quixbugs' buggy programs, we perform the manual
assessment as previous researchers have done on other bench-
marks [32, 3, 22, 14]. We manually compare the automatically
generated patches with the human-written patches. If a gener-
ated patch is identical or semantically equivalent (i.e., the actual
behavior is the same) to the human-written patch, it is consid-
ered as correct. Otherwise, a patch is deemed as over�tting if
1) it does not/partially �x the bug, or 2) it introduces a new
bug. To overcome the bias of manual assessment, all results are
discussed among at least two authors. Our evaluation of patch
correctness is publicly available on our GitHub repository [23].

3.2.4. RQ4: Automated Patch Correctness Assessments
As shown in previous research [12, 33], manual assessment

of program repair patches is a hard, time consuming and biased
task. Thus, we also consider three automated patches correct-
ness assessment techniques to identify over�tting patches, pro-
posed by previous research: a) Using automatically generated
tests based on a ground truth version (i.e., the human-written
patch) [34]; b) Using automatically generated tests by a pro-
gram speci�c generator based on a ground truth version [35];
c) Using dynamic program invariants based on a ground truth
version [25]. We now describe how each of those techniques
works.

Search-based test generation for patch assessment.Using au-
tomated test generation is one way for assessing patch correct-
ness [12, 36, 34, 37]. The idea of this technique is to generate
new test cases that complement the already provided (poten-
tially incomplete) test suite. In this paper, we consider Evosuite
[38], a state-of-the-art automated test generation tool, for gen-
erating those new correctness assessment tests. We have chosen
Evosuite according to the results of [39, 33], which have shown
that Evosuite is the most e� ective tool for this usage. The
search-based test generator technique takes as input a ground
truth program that is used as oracles, which means that the out-
puts from the ground truth programs on given inputs are the
expected outputs (i.e., oracles), including both values and ex-
ceptions. Per the previous terminology, this patch assessment
technique is namedRGTEvosuite, which is based on the ground
truth programs for test generation.

For each of the 40 buggy programs in the QuixBugs dataset,
we invoke Evosuite a �xed numbern of times. Eventually,
we obtainn di� erent independent JUnit test suites for each
program. Since Evosuite is a randomized algorithm, we take
n = 30 per the recommended practice [40, 34]. We always re-
move those generated tests that fail on the ground truth version,
because they are ill-formed for our task. We execute these gen-
erated tests over the patches generated by the repair tools. In
the assessment ofRGTEvosuite, a patch is assessed asover�tting
if it makes any automatically generated Evosuite test cases fail.
If no generated test fails, we consider that the correctness of the
patch isunknown(and notcorrect because the generated tests
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only sample the input domain, they do not assess the behavior
over the full input domain).

Program speci�c test generation.We consider a second ran-
dom testing approach calledRGTInputS ampling, which randomly
samples the test inputs based on the ground truth programs.
RGTInputS ampling is an implementation of random testing [35]
for QuixBugs. It samples the input space according to a speci�-
cation of the input space, a uniform distribution for sampling
and it uses the ground truth version as oracles [41]. If the
ground truth version throws an exception on a generated in-
put, the input is considered as invalid, the input is discarded.
For implementingRGTInputS ampling, we manually identify the
domain of each input variable for each program in QuixBugs.
The test generator is con�gured to sample the input space with
the goal of getting a �xed number of valid test cases with no
exception. For each program in QuixBugs, we generate 300
test cases withRGTInputS ampling. We run those test cases on all
generated patches of QuixBugs programs. In the assessment of
RGTInputS ampling, a patch is assessed asover�tting if it makes
any randomly generated program speci�c test cases fail.

Invariants detection for patch assessment.We consider a third
automated patch assessment based on invariants captured from
ground truth program execution, such assessment technique is
called ground truth invariants, aka,GTInvariants. An invariant is
a property that holds at a certain point or points in a program.
A program point is a speci�c place in the source code, such as
immediately before a particular line of code. Invariants detec-
tion runs a program, observes the values that the program com-
putes, and then reports properties that were true over the ob-
served program executions. The invariants based patch assess-
ment technique �rst infers program invariants from the ground
truth version and uses them to assess over�tting patches, per
the technique of [25]. It executes the patched programs based
on the provided manual tests and checks whether all inferred
invariants still hold. In the assessment ofGTInvariants, a patch
is assessed asover�tting if it violates any invariants hold for
ground truth program executions. To capture invariants in the
ground truth programs and checking whether they hold for the
captured programs, we use the tool Daikon [42].

Accuracy of automated patch assessment.To evaluate the ac-
curacy of automated patch assessments, we compare the auto-
mated patch assessment results with manual assessment, where
manual assessment is considered as ground truth. Speci�cally,
we compute the corresponding false positives and true negatives
as follows:

ˆ True Positive (TP): a patch classi�ed as over�tting by
manual assessment is also classi�ed as over�tting by an
automated assessment.

ˆ False Positive (FP): a patch classi�ed as correct by man-
ual assessment is classi�ed as over�tting by an automated
assessment.

ˆ True Negative (TN): a patch classi�ed as correct by man-
ual assessment is classi�ed as correct by an automated
assessment.

ˆ False Negative (FN): a patch classi�ed as over�tting by
manual assessment is classi�ed as correct by an auto-
mated assessment.

Finally, the accuracy of an assessment technique is computed
with the following evaluation formula:

Accuracy=
T P+ T N

(T P+ T N + FP + FN)
(1)

4. Empirical Results

We now present and discuss the empirical results of our four
research questions.

4.1. Results for RQ1: QuixBugs Benchmark Analysis

Table 1 presents the characteristics of QuixBugs, including
the numerical statistics (e.g., LOC) and failure symptoms (e.g.,
incorrect output, null pointer exception). Program names are
given in the �rst column in alphabetical order.

Type of bugs.The second column presents the type of bug in
each program. There are 17 di� erent bug types. The most fre-
quent bug types on QuixBugs are:1) Missing function callin
�ve programs. In those buggy programs, function invocations
are missing. This means the patch that repairs this type of bug
typically adds a function invocation. For example, to repair the
bug forFLATTEN, the existing variablex should be replaced by
�atten(x); 2) Incorrect comparison operatorin four programs,
where comparison operators include==, <, and >, etc. For
example inQUICKSORT, the operator� is used instead of>;
3) Missing lines with a function callin four programs. This bug
type refers to buggy programs that miss one or more lines of
code. For example, the �x for the buggy programWRAPis to
insert an additional line of codelines.add(text).

This diversity of bug types implies that repair approaches
should also consider a diverse set of repair transformations: for
example, some bugs could be repaired by replacing operators
(e.g.,incorrect comparison operator); other bugs could be re-
paired by replacing code (e.g.,reference to an incorrect vari-
able); or by inserting a new line of code (e.g.,missing lines
with a function call)). This implies that, for repairing all of
QuixBugs buggy programs, we need one or more approaches
capable of applying a wide set of repair transformations. Thus,
if one repair approach can repair most of the buggy programs
in QuixBugs, it would mean that this approach is general in
essence.
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Table 1: Descriptive Statistics about the QuixBugs Benchmark.

Buggy Program Name Bug Type LOC
Passing Failing Code Exe

Failure Symptoms
Tests Tests Coverage Sec.

BITCOUNT Incorrect logical operator 10 0 9 100% 900 timeout/in�nite loop

BREADTH FIRST SEARCH Missing boolean expression 30 4 1 100% <1 array index error

BUCKETSORT Reference to an incorrect variable 17 0 6 100%<1 incorrect output

DEPTH FIRST SEARCH Missing lines with a function call 23 4 1 100% <1 stack over�ow

DETECT CYCLE Missing boolean expression 17 4 1 100% <1 null pointer

FIND FIRST IN SORTED Incorrect comparison operator 22 4 3 90% 120
timeout/in�nite loop (1)

array index error (2)

FIND IN SORTED Missing +̀ 1' 19 5 2 100% <1 stack over�ow

FLATTEN Missing function call 18 1 6 83% <1 stack over�ow

GCD Expression swap 10 0 5 100% <1 stack over�ow

GET FACTORS Wrong constructor call 17 1 10 100% <1 incorrect output

HANOI Reference to an incorrect variable 53 0 7 100% <1 incorrect output

IS VALID PARENTHESIZATIONl Other code replacement 15 2 1 100% <1 incorrect output

KHEAPSORT Missing function call 29 1 3 100% <1 incorrect output

KNAPSAC Incorrect comparison operator 30 4 6 100% 2 incorrect output

KTH Reference to an incorrect variable 25 3 4 100% <1 array index error

LCS LENGTH
Incorrect array slice

48 1 8 95% <1 incorrect output
Missing boolean expression

LEVENSHTEIN Missing +̀ 1' 15 1 6 100% <1 incorrect output

LIS Missing logic 27 0 4 91% <1 incorrect output

LONGESTCOMMON SUBSEQUENCE Missing function call 14 6 4 91% <1 incorrect output

MAX SUBLIST SUM Missing function call 13 2 4 100% <1 incorrect output

MERGESORT Incorrect arithmetic expression 40 0 12 100%<1 stack over�ow

MINIMUM SPANNING TREE Missing logic 67 0 3 72% <1 concurrent modi�cation

NEXT PALINDROME Missing `- 1' 28 4 1 87% <1 incorrect output

NEXT PERMUTATION Incorrect comparison operator 32 0 8 83% <1 incorrect output

PASCAL Missing +̀ 1' 29 1 4 100% <1
array index error (3)

incorrect output (1)

POSSIBLECHANGE Missing boolean expression 23 0 9 100% <1 array index error

POWERSET Missing logic 24 1 4 100% <1 incorrect output

QUICKSORT Incorrect comparison operator 37 12 1 87% <1 incorrect output

REVERSELINKED LIST Missing Assignment 12 1 2 100% <1 null pointer

RPN EVAL Expression swap 28 3 3 100% <1 incorrect output

SHORTESTPATH LENGTH Other code replacement 49 2 2 92% <1 incorrect output

SHORTESTPATH LENGTHS Expression swap 31 0 4 100% <1 incorrect output

SHORTESTPATHS Missing function call 55 0 3 100% <1 incorrect output

SHUNTING YARD Missing lines with a function call 31 0 4 100% <1 incorrect output

SIEVE Incorrect method called 35 1 5 75% <1 incorrect output

SQRT Incorrect arithmetic expression 9 1 6 100% 360 timeout/in�nite loop

SUBSEQUENCES Missing lines with a function call 22 2 12 100% <1 incorrect output

TO BASE Expression swap 14 0 7 100% <1 incorrect output

TOPOLOGICAL ORDERING Incorrect method called 25 0 3 100% <1 incorrect output

WRAP Missing lines with a function call 22 0 5 75% <1 incorrect output

Total - 1,034 70 189 - - -

Program size.The third column gives the lines of code (LOC)
per program ranging from 9 to 67 lines, which can be consid-
ered as small. However, we note that 14 are recursive programs
and 13 programs contain nested loops. It means that, despite

a small program size (which can lead to a small search space),
the time complexity or space complexity of those programs is
sometimes non-trivial.
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Characteristics of test suites.Table 1 also summarizes the statis-
tics about JUnit tests: the fourth and �fth columns present the
number of passing tests and failing tests. As we discussed in
Section 2, all programs from the new version of the QuixBugs
have at least one failing JUnit test to expose the bug, which
means that the prerequisite of test suite repair is met. There
are 15 programs with no passing tests. All benchmarks of the
literature, to our knowledge, contain at least one passing test.
Passing tests are important for repair approaches to model the
expected behavior of the program, which means that, without
these passing tests, synthesis-based approaches such as Nopol
have degenerated synthesis problems when repairing QuixBugs
programs.

The sixth column gives the branch coverage information of
JUnit tests. We observe that the majority of the QuixBugs are
completely covered by the test cases (i.e., coverage 100%). The
least covered program (MINIMUM SPANNINGTREE) has a
72% of coverage. This high coverage implies that, for most
of the branches from the buggy programs, there is at least one
test case that executes it. Thus, any candidate patch applied on
those branches will be executed at least once.

Execution time.The seventh column presents the test execu-
tion time for each program. There are 37/40 programs whose
tests run in less than 2 seconds, which suggests that program
repair will evaluate fast each candidate patch, and eventually
repair approaches can completely navigate the search space.
For those 3 programs where the bug triggers a timeout/in�nite
loop, the tests timeout after 60 seconds, which explains the 3
large execution time values of programs (BITCOUNT, SQRT,
andFIND FIRSTIN SORTED).

Failure symptoms.The last column presents the failure symp-
toms. We observe 6 di� erent symptoms. There are 26 programs
with incorrect output failures, 5 programs withstack over�ow
failures, 5 programs withindex out of bounds failures, 3 pro-
grams withtimeout/in�nite loop failures, 2 programs withnull
pointer failures, and 1 program withconcurrent modi�cation
failure. Moreover, we found that two programs,PASCALand
FIND FIRSTIN SORTED, have test cases that expose di� er-
ent failures. In addition to the diversity of bug types we pre-
viously discussed, QuixBugs also has a diversity of test failure
symptoms. This involves that automated program tools must
take into account di� erent situations after the bug is executed.
For example, in the case oftimeout/in�nite loop failures, an
approach must avoid handling itself, and in the case ofstack
over�ow failuresor index out of bound failuresthe repair tool
must proceed after the failure and complete the dynamic pro-
gram analysis such as fault localization.

Input preconditions.Preconditions of the input domain for each
program are important in our study as we use them as the con-
straints to automatically generate patches and to discard over-
�tting patches. We computed them for the 40 programs. All
preconditions are given in our online appendix [23]. Just to
mention one as an example, the programGET FACTORfactors
an integer value using trial division. It has a unique function

Figure 1: The distribution of 338 QuixBugs patches by 10 repair
tools.

with signatureget factor(Integer n): List<Integer>. The pre-
condition we found is that the value for integer variablen must
be greater than 1. Otherwise, the program is meaningless when
the input is a negative integer or zero. And the precondition vi-
olated test case generation will in�uence the patch assessment
results in our study.

Unique characteristics of QuixBugs.Comparing the benchmarks
of literature [9, 43, 10, 44, 45, 46, 47], we found three unique
characteristics in QuixBugs:1) There is a focus on algorithmic
tasks such assorting algorithms, search algorithms, towers of
Hanoi puzzle, whose time complexity or space complexity is
non-trivial. The existing benchmarks from the literature (such
as Defects4J [10] and Bears [45]) contain buggy programs of
real and large open-source libraries, with procedures and mod-
ules that implement several functionalities. That is, a buggy
program of those benchmarks is not a single textbook algo-
rithm implemented in one single class as each program from
QuixBugs is; 2) There are 15/40 programs with only failing
tests. To our knowledge, all other benchmarks in the litera-
ture always contain at least one passing test;3) The benchmark
contains 3 timeout/in�nite loop failures and 5 stack over�ow
failures, which is uncommon in bug benchmarks. Thus, using
QuixBugs for program repair will give new insights into the
successes and limitations of current repair tools.

Answer to RQ1: QuixBugs is a valuable dataset for study-
ing program repair. It has a large diversity of bug types, as
well as a diversity of failure symptoms. It contains buggy
programs with unique characteristics compared to exist-
ing program repair benchmarks:1) Complex algorithmic
tasks;2) Programs with no passing tests;3) Programs with
a timeout/in�nite loop.
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Table 2: Number of generated patches per tool.

Repair Tool # Patches # Repaired Programs

JGenProg 164 4
Arja 113 4
RSRepair 31 3
NPEFix 9 2
Cardumen 5 5
Tibra 4 2
Nopol 4 4
JKali 3 2
JMutRepair 3 3
Dynamoth 2 2

Total 338 patches 16 patched programs

4.2. Results for RQ2: Repairability of QuixBugs

The execution of the ten repair tools produced on the 40
buggy programs of QuixBugs produced 1,470 program repair
patches. Surprisingly, we observe that the repair tools generate
duplicated patches. We conduct a sanity check and discard syn-
tactically duplicated patches per repair tool. As a result, we dis-
card 1,132 duplicated patches and obtain 338 unique patches.

Repaired bugs.We present the results of generated unique patches
from our empirical study in Figure 1. In total, we have obtained
338 patches that repair 16 di� erent buggy programs. Overall,
40% of QuixBugs can be repaired with at least one test suite
adequate patch. Note that we have more patches than repaired
programs because:1) Some bugs are repaired by more than one
repair tools (e.g.,QUICKSORT); 2) Some repair tools gener-
ate two or more not duplicated patches for a speci�c bug (e.g.,
Arja for QUICKSORT). Note that this empirical study is novel
and at scale. To our knowledge, this is the most comprehen-
sive QuixBugs repair empirical study done ever, with the largest
number of repair tools and the largest number of patches gener-
ated.

E� ectiveness of repair tools.We summarize the e� ectiveness
of repair tools in Table 2. The �rst column gives the name of the
repair tools. The second and third columns indicate the number
of patches generated and the number of programs they repair,
respectively. Cardumen is the approach that repairs the largest
number of buggy programs: 5 buggy programs in total can be
repaired. Notably, we observe in Figure 1 that 4 of them are
only repaired by Cardumen. This shows the extracted code tem-
plates in Cardumen are diverse and e� ective. Moreover, JGen-
Prog and Arja are two systems that generate the largest num-
ber of test suite adequate patches (164 and 113 patches). This
is because JGenProg and Arja leverage multi-objective genetic
programming to evolve multiple patches over a series of gen-
erations progressively. There are 4 programs that are repaired
by more than three repair tools:LIS, QUICKSORT, SHORT-
ESTPATH LENGTHSand DEPTH FIRSTSEARCH. The re-
maining 12 programs are repaired by only one repair tool. This
implies that speci�c repair strategies are useful to repair speci�c
bugs. We believe that the global e� ectiveness of the automatic

Table 3: Repaired bug types.

Bug Type (Identi�ed) # Repaired Programs

Incorrect comparison operator 3/4 knapsack,
nextpermutation,
quicksort

Incorrect arithmetic expression 2/2 mergesort, sqrt
Expression swap 2/2 shortestpath lengths,

rpn eval
Missing logic 2/3 powerset, lis
Missing+ 1 2/3 �nd in sorted, leven-

shtein
Other code replacement 1/2 is valid parenthesization
Reference to an incorrect variable 1/3 hanoi
Wrong constructor call 1/1 get factors
Missing boolean expression 1/4 detectcycle
Missing line with call 1/4 depth�rst search

program repair has to be considered by combining diverse re-
pair approaches together, and not by building a single silver-
bullet system.

The repaired bug types.Recall Table 1 introduces 17 types of
bugs in QuixBugs. In our empirical study, there are 10/17 types
of bugs that are patched by the considered automatic repair ap-
proaches. We summarize the repair bug types in Table 3, where
the �rst column gives the name of the bug type. The second
column gives the number of repaired programs belonging to
the bug type over the total number of this bug type. We list
the repaired programs in the third column. The most repaired
type of bug is theincorrect arithmetic expression, with 3 pro-
grams. The 3 repaired programs were repaired by 6 di� erent
repair approaches. This means that a particular bug type can
be repaired using di� erent repair strategies, the reason is that
there are di� erent strategies to repair the same bug type. For
example, Nopol is able to synthesize new statements that use
the correct variables instead of the incorrect ones, while JGen-
Prog replaces the buggy statement having the incorrect variable
by another one similar that has the correct variable.

In this empirical study, the considered repair tools could not
repair 7 bug types:1) Incorrect logical operator;2) Missing `-
1'; 3) Incorrect array slice;4) Incorrect method called;5)
Missing function call;6) Missing Assignment;7) Missing
arithmetic expression.

We now study the reasons for what some types could not
be repaired by any approach. We identify three main reasons:
1) No repair operator implemented;2) No �xing ingredients;
3) Limitation of repair implementations.

No repair operator implemented.No repair tool repaired
the bug typeIncorrect logical operatorfrom BITCOUNTpro-
gram. The ground truth patch updates the a logical operator
“ˆ ” to “ &” . Even if JMutRepair is able to generate patches
that change logical and relational operators, it does not imple-
ment any mutation of the operator“ˆ ” .

No �xing ingredients.The advantage of redundancy based
repair approaches such as JGenProg, Arja or Cardumen is that
they create patches from code already written in the buggy pro-
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gram. Those approaches could eventually repair a bug of type
Incorrect logical operator if the patch's code (in this case, a bi-
nary expression with an operator of & ) is present in the buggy
program. Unfortunately, that is not the case inBITCOUNT. A
similar case happens with bug Missing function call: the ground
truth patch for buggy programSIEVE replaces a method in-
vocationany by all. However, in that buggy program, there
is no piece of code that invokesall. As a consequence, the
redundancy-based repair approaches considered in this empiri-
cal study cannot synthesize a �x.

Limitation of repair implementations.The buggy program
LCSLENGTHthat has not one single bug, but two:incorrect
array slice and missing boolean expression, and the ground
truth patch modi�es two di� erent locations correspondingly.
Even if, in theory, that buggy program could be repaired by Arja
or JGenProg, we observe in practice they could not �nd a patch
because it is a complex multi-location patch. Multi-location and
multi-bug repair are indeed an open research challenge [48].

Impact of test cases on the capability of program repair tools.
For the 16 repaired programs, 5/16 of them have only failing
tests and no passing tests. To our knowledge, all benchmarks
of the literature contain at least one passing test case. Here,
our empirical study shows that program repair with only fail-
ing tests can be successful. There are four programs with no
passing tests that are repaired by JGenProg, Arja and RSRepair.
This clearly shows that generate-and-validate repair techniques
do not require passing tests for synthesizing a patch. This is
because the generate-and-validate repair tools, such as JGen-
Prog, Arja and RSRepair do not need to infer semantic con-
straints from passing test cases. They generate the test suite
adequate patch through searching the �xing ingredients regard-
less of passing test cases. However, not all passing test absent
programs can be repaired by generate-and-validate approaches
because of the three limitations we have presented above. On
the contrary, the synthesis-based repair approaches, e.g., Nopol,
require passing tests to infer semantic constraints. The absence
of passing tests creates a degenerated synthesis problem that
hampers repair e� ectiveness. To this extent, because it contains
bugs with no passing test cases, QuixBugs is more appropriate
for generate-and-validate repair techniques than for synthesis-
based ones.

On the test failure symptoms of patches programs.We have
aggregated the failure symptoms of the 16 patched programs:
10 incorrect output, 4 stack over�owerrors, 1timeout/in�nite
loop error, and 1null pointer exception. This con�rms the re-
sults on Defects4J showing that program repair is e� ective not
only for assertion errors. No repair approach could repair a
bug exposed by aconcurrent modi�cation exceptionor anar-
ray index error. One possible explanation for this is that test
suite based repair tools typically determine suspicious buggy
locations based on the root cause of the test failures. For those
bug types, the test failure symptoms make repair tools di� cult
to identify the right buggy locations. For example, the buggy
programFIND FIRSTIN SORTEDis a typical incorrect com-
parison operator bug, which requires the modi�cation of a com-

parison operator from“ <=” to “ <” , at a location that no repair
tools identify as suspicious. This suggests the need for alter-
native fault localization strategies to handle more diverse test
failure symptoms, such as pattern-based bug localization [49].

On the di� erences of program repair tools on other benchmarks.
Now, we compare the program repair tools' di� erences depend-
ing on the benchmark, by comparing the repairability over De-
fects4J and Quixbugs. The considered Defects4J patches are
those of Durieux et al. [30], who executed on Defects4J with
the same repair tools that we have also considered in this work.
The results are moderately di� erent in repairability rate, failure
rate and proportions of duplicated patches.

First, the repairability rate is the percentage of unique re-
paired bugs over all bugs from a benchmark. The repair tools
show a slightly higher repairability rate in Defects4J, i.e., 47.34%
(187/395) [30], than in QuixBugs, i.e., 40% (16/40). The higher
repairability of Defects4J bugs could be explained, to some ex-
tent, in the fact that those bugs are larger (in LOC) than those
from QuixBugs. This implies that redundancy-based repair ap-
proaches (e.g., Cardumen) have more �xing ingredients avail-
able to synthesize a candidate patch, increasing the probability
of synthesizing a test suite adequate patch.

Second, we observe that the repair failure rate – the per-
centage of repair attempts that �nished due to an error – is
for QuixBugs (4.31%) compared to 21.08% for Defects4J [30].
The reason is that Defects4J compared to QuixBugs involves
more modules and dependencies during the program execution,
the complexity of Defects4J is higher and hits the limitation of
the current automatic patch generation tools. This calls for fu-
ture research to investigate the implementation of repair tools
to mitigate the failure rate.

Third, in both benchmarks, the 10 considered program re-
pair tools generate a large number of syntactically identical, i.e.,
duplicated patches, but in di� erent proportions. Speci�cally,
there exists 51% (19,019/37,224) duplicated patches on De-
fects4J and 77% (1,132/1,470) duplicated patches on QuixBugs.
We suspect that the larger number of duplicates on QuixBugs is
due to the small size of QuixBugs programs: the amount of �x-
ing ingredients is fewer, those are less diverse than Defects4J,
thus they are reused more frequently, and to produce more du-
plicated patches.

Answer to RQ2: 16/40 QuixBugs programs are repaired
with test suite adequate patches synthesized by ten repair
tools. Those test suite adequate patches cover 10/17 bug
types. A key originality of this empirical study is that it
proves that program repair tools work despite the absence
of passing tests (�ve programs without passing tests can be
repaired automatically). Those results were preliminarily
reported in the work [24]. Here, we report on more patches
(338 patches versus 64 patches in [24]), with unique qual-
itative insights.

4.3. Results for RQ3: Manual Patch Correctness Assessment
Figure 2 shows the manual assessment results for 338 au-

tomatic program repair patches synthesized for 16 buggy pro-
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Figure 2: Manual assessment of 338 QuixBugs patches spread over
16 QuixBugs bugs.

grams of QuixBugs. The green and red legends indicate correct
patches and over�tting patches, respectively. In total, 158 of
338 are classi�ed as correct, and the remaining 180 patches are
classi�ed as over�tting by our manual assessment. Overall, per
this ground truth based manual assessment, there are 7 out of
40 QuixBugs buggy programs are correctly repaired.

This means that the repair rate for QuixBugs is 17.5% (7/40
bugs are correctly repaired), which is respectively 8.1 percent-
age points and 9.1 percentage points higher than the state-of-
the-art evaluations on Defects4J (21/224 bugs are correctly re-
paired) and IntroClassJava (25/297 bugs are correctly repaired)
reported by CapGen [3]. We explain the higher repair rate for
the following two reasons. First, QuixBugs are small programs,
this narrows down the search space of �xing ingredients, and al-
lows for repair tools to precisely locate buggy lines and to �nd
�xing ingredients for patch generation. Second, our empirical
study considers more repair tools than previous ones (10 di� er-
ent repair tools) which mechanically increases the number of
repaired bugs ([32, 14, 50]).

Now, we talk about the over�tting rate over the generated
test suite adequate patches. According to our manual assess-
ment, 53.3% (180/338) of patches for QuixBugs are over�t-
ting. This further con�rms that program repair tends to gen-
erate more over�tting patches than correct patches [20, 18].
Since our empirical study is on a new benchmark, this further
strengthens the external validity of this important �nding.

Notably, we observe that for 15 of 16 buggy programs re-
paired with test suite adequate patches, either all the generated
patches are classi�ed as correct or all over�tting. This suggests
that all tools are identically impacted when the speci�cation is
weak. Moreover, recall that di� erent repair tools have overlap-
ping repair strategies. For example, Arja and JGenprog are both
based on genetic programming search techniques to rearrange
the ingredients already existent in the buggy program. The out-
lier is the eight generated patches for theDETECTCYCLEpro-
gram, all by NPEFix. NPEFix generates eight patches to �x the

Figure 3: The number of buggy programs correctly and incorrectly
repaired per repair tool.

null pointer exception by adding null checks for variablehare.
However, we observe that four of those patches, beyond �xing
the original bug, introduce a new bug which is not exposed by
the original test suite ofDETECTCYCLE. Thus, we consider
those four patches as over�tting, and the other four, which do
not su� er that problem, as correct.

Figure 3 presents the number of programs that are correctly
repaired per program repair tool. This means the number of
programs for which there exists at least one correct patch ac-
cording to the manual assessment we have done. The green
and red legends indicate the number of buggy programs that
are respectively correctly and incorrectly repaired per repair
tool. We have the following observations:1) All 10 repair
tools are able to correctly repair at least one buggy program of
QuixBugs;2) Cardumen correctly repaired 3 buggy programs,
which outperforms the other 9 repair tools;3) Three repair tools
contribute to more correctly than incorrectly repaired programs
(Cardumen, RSRepair and JMutRepair), three tools perform the
same number (Arja, Nopol and Dynamoth), and four tools pro-
duce more incorrectly than correctly repaired programs (NPE-
Fix, JKali, Tibra and JGenProg);4) Overall, 7 unique programs
are correctly repaired by all repair tools, they are complemen-
tary to each other.

To the best of our knowledge, our study is the �rst ever to
manually assess 338 patches for QuixBugs. Having this large
amount of manually labeled patches is valuable: it paves the
way to use machine learning techniques to do patch correctness
prediction [51].

Answer to RQ3: According to our manual assessment,
7=40 QuixBugs bugs are correctly repaired, and 158=338
program repair patches are considered as correct. The
other 180=338 generated patches are assessed as over�t-
ting. Those results are original, because they are made
on a benchmark that is little studied. Our �ndings are
aligned to those previously reported on other bug bench-
marks: 1) The number of generated over�tting patches
is larger than the number of generated correct patches;
2)Test suites are too weak to specify program repair patches,
even for small programs.
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Table 4: Number of patches classi�ed as over�tting for QuixBugs programs with at least one patch.

Programs
# Generated Over�tting patches detected

patches RGTEvosuite RGTInputS ampling GTInvariants Manual assessment

LIS 122 0 0 118 0
SHORTESTPATH LENGTHS 91 91 91 85 91
DEPTH FIRST SEARCH 59 58 0 55 59
QUICKSORT 28 0 0 3 0
SQRT 18 18 18 18 18
DETECT CYCLE 8 0 0 8 4
POWERSET 3 3 3 0 3
IS VALID PARENTHESIZATION 1 1 1 1 1
FIND IN SORTED 1 1 1 1 1
HANOI 1 1 1 0 1
GET FACTORS 1 1 0 0 1
NEXT PERMUTATION 1 0 0 0 1
RPN EVAL 1 0 0 0 0
KNAPSACK 1 0 0 0 0
LEVENSHTEIN 1 0 0 0 0
MERGESORT 1 0 0 0 0

Sum 338 174 115 289 180

4.4. Results for RQ4: Automated Patch Correctness Assess-
ments

In this section, we analyze the results of automated patch
correctness assessments. We compare them against the results
obtained from the manual assessment. This comparison allows
us to calculate the accuracy of the considered automated assess-
ment techniques. Finally, we discuss their true/false positive
and negative cases.

4.4.1. RQ4a: Patches classi�ed as over�tting by automated
patch assessments

Table 4 shows the over�tting patch assessment results pro-
duced by the three considered techniques over 338 generated
patches. The �rst column gives the names of buggy programs
patched by at least one repair tool. The second column shows
the total number of generated patches over all tools. The third
to �fth columns give the number of patches classi�ed as over�t-
ting by the three automated assessments. We present the manual
assessment results in the last column. For example, the �rst row
shows there are 122 patches generated for bugLIS, RGTEvosuite

andRGTInputS amplingidentify all of them as correct patches (i.e.,
0 over�tting patch), which is fully aligned with manual assess-
ment results. However, theGTInvariants classi�es 118 of them as
over�tting, which contradicts the manual assessment.

The automated patch assessment techniques classify patches
as over�tting with di� erent magnitude:RGTEvosuite identi�es
174/338 (51.5%) patches from 8 buggy programs as over�tting,
RGTInputS amplingidenti�es 115/338 (34%) patches from 6 buggy
programs as over�tting, andGTInvariants identi�es 289/338 (85.5%)
patches from 8 buggy programs as over�tting. The di� erences
between those numbers can be explained by the kind of infor-
mation they collect, and are in�uenced by outliers. For exam-
ple,GTInvariants classi�es more over�tting patches than the two

other techniques, this is mostly because it classi�es 118 patches
for programLIS as over�tting while the other two techniques
do not. On the contrary,RGTInputS ampling, which classi�es as
over�tting less patches than the other two techniques, does not
classify as over�tting any patch from programDEPTH FIRST-
SEARCH, while the other two techniques do it for at least 55

patches.
Now, we compare the results from automated assessment

with those from manual assessment, which classi�es as over-
�tting 180 patches. That comparison allows us to detect the
misclassi�cation of the automated assessments.

The Venn diagram in Figure 4 shows the overlap between
the di� erent assessments. First, we observe that the manual as-
sessment and the three techniques agree on the majority (105)
of over�tting patches (the intersection of all circles). This shows
that all considered automated assessment techniques can cor-
rectly identify, at least, 58.3% (105/180) of over�tting patches.
Second, the assessment result fromRGTEvosuiteis the closest to
manual assessment with 174 of 180 cases. Overall,RGTEvosuite

is able to correctly classify the 174/180 over�tting patches. Third,
all over�tting patches classi�ed byRGTInputS amplingcan be found
by RGTEvosuite. The overlap between them is due to the simi-
larity of the techniques, both based on the generation of test
inputs. However,RGTEvosuiteis able to correctly classify 59 ad-
ditional patches. Fourth,GTInvariants classi�es as over�tting the
largest number of patches (289). However, that is due to the
misclassi�cation of 125 correct patches.

The three automated techniques achieve patch correctness
assessment results consensus on the majority of buggy pro-
grams (9/16 programs). For three buggy programs, they agree
on the over�tting diagnostic for all patches, for which our man-
ual assessment also classi�ed them as over�tting. Moreover,
the three techniques achieve consensus on the absence of over-
�tting patches for 5 buggy programs (the last 5 rows of Ta-
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Figure 4: Venn diagram showing the overlap between the three
considered automated assessment techniques and manual assessment.

Table 5: Accuracy of the three automated patch assessments.

Automated Assessment # TP #FP # TN # FN Accuracy

RGTEvosuite 174 0 158 6 98.2%
RGTInputS ampling 115 0 158 65 80.8%
GTInvariants 164 125 33 16 58.3%

ble 4). However, according to our manual assessment, there is
one patch for programNEXTPERMUTATIONwhich is actu-
ally over�tting.

4.4.2. RQ4b: Accuracy of automated patch assessments
The manual assessment enables us to compute the accuracy

of the three automated correctness assessments.
Accuracy. Table 5 gives the results of this analysis. The

�rst column gives the name of the automated assessment tech-
nique, and the second to fourth columns indicate the number
of true positives, true negatives, false positives, and false neg-
atives. The individual accuracy is given in the last column ac-
cording to Equation 1. For instance,RGTEvosuiteyields 174 true
positives, 0 false positive, 158 true negatives, and 6 false neg-
atives. This means there are 174 and 158 patches that are cor-
rectly classi�ed as over�tting and correct, respectively. On the
contrary,RGTEvosuitefails to identify 6 over�tting patches.

The RGTEvosuite, RGTInputS ampling, andGTInvariants respec-
tively achieve an accuracy rate of 98.2%, 80.8%, and 58.3%.
RGTEvosuiteachieves the best accuracy among the three assess-
ment techniques. This is inline with previous results having
shown that Evosuite performs better than pure random test gen-
eration [39, 33, 52]. Also,RGTEvosuitehas better accuracy than
GTInvariants, this is becauseRGTEvosuite produces fewer false
positives thanGTInvariants (0 versus 125).

True and false negatives.RGTEvosuiteandRGTInputS ampling

report the same number of true negatives cases (158), which
are correct patches not classi�ed as over�tting. Now, we see
that all three techniques have false negatives, which are over-
�tting patches classi�ed as correct. In the case of test gener-

Listing 1: An over�tting patch by JMutRepair that is only found by
manual assessment.

for ( int j=perm .size () -1; j != i ; j - -) {
- if (( perm .get ( j ) ) < (perm .get ( i ) ) ) {
+ if (( perm .get ( j ) ) >= (perm .get ( i ) ) ) {

// ground truth patch :
// if ( perm .get ( j ) > perm .get ( i ) ) {

ation techniques such asRGTEvosuite andRGTInputS ampling, the
false negative cases appear when the generated tests do not
contain inputs that expose the incorrect behavior of an over-
�tting patch. RGTInputS amplingproduces the most false negative
cases (65). This shows the weaker e� ectiveness of the domain-
speci�c generators developer to sample test inputs. Finally, no
technique is able to identify all over�tting patches and have zero
false negatives.

We discuss a case of an over�tting patch that is not iden-
ti�ed as such by any automated techniques. Listing 1 gives
the patch ofNEXTPERMUTATIONgenerated by JMutRepair.
The bug is present in an if condition which compares the posi-
tion of two elements in a listperm. The generated patch uses
the“ >=” operator to �x the bug. This patch is not identical to
the ground truth version, which uses the operator“ >” instead.
The manual assessment reveals that this patch is over�tting:
if the list permcontains the same values, the behaviors of the
JMutRepair patch and the ground truth patch di� er and the pro-
grams produce di� erent outputs. The aforementioned speci�c
input was neither generated byRGTEvosuitenorRGTInputS ampling.
Consequently, the JMutRepair patch is not classi�ed as over-
�tting. This case study illustrates that automated correctness
assessment cannot fully replace manual assessment.

True and false positives. Table 5 shows thatRGTEvosuite

has the largest number of true positive cases among the three
assessment techniques.RGTEvosuiteclassi�es 59 and 10 more
over�tting patches thanRGTInputS amplingandGTInvariants. All
over�tting patches classi�ed byRGTEvosuiteandRGTInputS ampling

are true positive cases (i.e., they do not su� er any false posi-
tive case). Those two approaches are 100% precise. On the
contrary,GTInvariants su� ers from a large number of false posi-
tive cases (125). Thus, the precision of this technique is 56.7%
(164/289). We identify two main reasons behind those false
positives. First, the invariants may capture a speci�c value of
the test case, instead of capturing the full range. For instance,
an invariant may capturea.value== 0 instead ofa.value>=
0 because only 0 is used in the test case. In this case, the in-
variant itself is over�tting and results in a false positive. Sec-
ond, invariants detection is sensitive to procedure exit and entry
points, where the preconditions and postconditions are obtained
from. When a patched program adds new exit points (e.g., new
return statements), all invariants that hold for the ground truth
program are expected to hold at new exit points, otherwise, a
patch is assessed as a violation, and this is the major reason for
those false positives.

Listing 2 is an example of false positive forGTInvariants.
Listing 2a is the ground truth patch for the buggy program
QUICKSORT. The invariants captured from the ground truth
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Listing 2: A case study of a false positive ofGTInvariants.

public stat ic ArrayList < Integer >
quicksort ( ArrayList < Integer > arr ) {

if ( arr . isEmpty () ) {
return new ArrayList < Integer >() ;

}
Integer pivot = arr . get (0) ;

ArrayList < Integer > lesser = new ArrayList < Integer >() ;
ArrayList < Integer > greater = new ArrayList < Integer >() ;

for ( Integer x : arr . subList (1 , arr . size () ) ) {
if (x < pivot ) {

lesser .add (x) ;
- g else if (x > pivot) f //buggy code
+ g else if (x >= pivot) f //ground truth patch

greater .add (x) ;
}

a: The ground-truth patch of QUICKSORT

Program : QUICKSORT
( java .uti l . ArrayList ) ::: EXIT
===============================================
// always hold
arr [] == orig (arr [])
return != null
return [] elements != null
return []. getClass () . getName () elements ==

java . lang . Integer . class
// the fol lowing invariants in gray hold for the ground

truth patch and l ist ing2c patch , but not l ist ing2d

(size(arr[])-1==-1)==>(arr[] == [])

(size(arr[])-1==-1)==>(arr[].getClass().getName()==[])

(size(arr[])-1==-1)==>(return[] == [])

(size(arr[])-1==-1)==>(return[].getClass().getName()==[])

b: Invariants captured from the ground truth program execution

public stat ic ArrayList < Integer >
quicksort ( ArrayList < Integer > arr ) {

if ( arr . isEmpty () ) {
- return new ArrayList<Integer>();
+ if (arr.isEmpty()) f
+ return new ArrayList<Integer>();
+ g

}
Integer pivot = arr . get (0) ;
ArrayList < Integer > lesser = new ArrayList < Integer >() ;
ArrayList < Integer > greater = new ArrayList < Integer >() ;
for ( Integer x : arr . subList (1 , arr . size () ) ) {

if (x < pivot ) {
lesser .add (x) ;

- g else if (x > pivot) f
+ g else f

greater .add (x) ;
}

c: A semantically equivalent patch classi�ed as correct byGTInvariants

public stat ic ArrayList < Integer >
quicksort ( ArrayList < Integer > arr ) {

if ( arr . isEmpty () ) {
return new ArrayList < Integer >() ;

}
Integer pivot = arr . get (0) ;

+ if (arr.isEmpty()) f
+ return new ArrayList<Integer>();
+ g
ArrayList < Integer > lesser = new ArrayList < Integer >() ;
ArrayList < Integer > greater = new ArrayList < Integer >() ;
for ( Integer x : arr . subList (1 , arr . size () ) ) {

if (x < pivot ) {
lesser .add (x) ;

- g else if (x > pivot) f
+ g else f

greater .add (x) ;
}

d: A semantically equivalent patch classi�ed as over�tting byGTInvariants

program execution are given in Listing 2b. That ground truth
patch modi�es an operator, from“ >” to “ >=” .

Our empirical study found two patches for this QuixBugs
subject: one presented in Listing 2c classi�ed as correct by
GTInvariants, and a second one presented in Listing 2d classi�ed
as over�tting by the same assessment. Both patches modify
the conditions ofelseblock, using “else“ to replace “else if (x
> pivot)“. These changes are semantically equivalent to those
proposed by the ground truth patch, so the patches are correct.

We note that these two generated patches add redundant
statements ofif (arr.isEmpty(), which do not in�uence the cor-
rectness of the patches. However, those statements impact the
correctness evaluation done byGTInvariants because they intro-
duce new exit points (new return statements). In Listing 2b, we
can see that an invariant states a property for variablearr at the
method exit point. The invariants in gray hold for the patch in
Listing 2c, because the exit pointreturn new ArrayList<Integer>();
meets all captured invariants, all four properties captured for
variablearr (e.g.,arr[] == [] ). However, in the patch at List-
ing 2d, a new program exit point is added one line after the �rst
exit point, and one invariant is not satis�ed. When thearr is not
empty, the program enters into the new exit point, and invariant
arr[] == [] is violated.

To sump, capturing behavioral di� erences with invariants
violations is hard. In particular, invariants that hold at a certain
point in a program typically no longer hold in the patched pro-

gram when new exit points that are added. This is an important
caveat for assessing patches generated by genetic programming
(e.g., JGenProg and Arja), which tend to generate many new
statements with exit points. This suggests interesting future re-
search directions to improveGTInvariants.

Answer to RQ4: The accuracy ofRGTEvosuite, RGTInputS ampling

andGTInvariantsare 98.2%, 80.8% and 58.3%, respectively,
showing thatRGTEvosuiteis the best patch assessment tech-
nique on QuixBugs. To our knowledge, this is the �rst
study ever that uses automated patch assessment on QuixBugs,
showing both its feasibility and e� ectiveness. We note
thatGTInvariants, proposed by [25], su� ers from many false
positives, calling for more research on this topic, little ex-
plored by the program repair research community.

5. Threats to Validity

The major threat in our study lies in the manual correctness
assessment, which may result in misclassi�cation due to a lack
of expertise or mistakes. This threat holds for all program repair
results based on manual assessment. The best mitigation to this
threat is to make patches and analyses publicly available. Then
other researchers are able to further assess them, this is what we
have done in our open-science repository [23].

We note that manual assessment done over QuixBugs patches
is less error-prone than for Defects4J and more complex bench-
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marks because:1) QuixBugs contains well-known algorithms
(e.g., QUICKSORT), thus the patch analyst does not need to
be an expert in the buggy program's application domain;2) As
presented in Table 2, QuixBugs programs are short, thus it is
easier to read, debug and understand the generated patches.

The second threat is about construct validity. The automatic
repair tools that we used in this empirical study could have bugs
that prevent them to discover all possible patches. For this rea-
son, the results we have reported are likely an under-estimation
of the repairability of QuixBugs using automatic program re-
pair.

6. Discussion

The bene�ts of using QuixBugs.Studying QuixBugs provides
two major bene�ts for the research community. First, it enables
the community to make new �ndings about program repair that
have never been reported in other benchmarks, that we will dis-
cuss next. Second, it strengthens the external validity of the
�ndings previously found on other benchmarks.

The study presented in this paper enables us to identify the
following new �ndings: 1) Generate-and-validate approaches
are capable of generating patches for buggy programs with only
failing test cases, while synthesis-based approaches cannot. The
other benchmarks do not contain buggy programs with only
failing tests, thus this �nding has never been reported before;
2) 7 of 40 (17.5%) buggy programs of QuixBugs are correctly
repaired, which is 8.1% and 9.1% higher than for Defects4J
and IntroClassJava benchmarks, respectively (see Section 4.3);
Our explanation is that, as the QuixBugs programs are smaller
than for other benchmarks, the corresponding search spaces are
also smaller, thus, the repair tools are able to navigate a bigger
portion of the search space, increasing the probability of �nd-
ing the patch;3) The automated patch assessment technique
RGTEvosuitehas the best e� ectiveness in our study, it is able to
identify 98.2% over�tting patches.

Our novel empirical study on QuixBugs con�rms the fol-
lowing �ndings found on other benchmarks, showing their gen-
eralizability: 1) Our study on QuixBugs con�rms the existence
of over�tting patches by a large amount; 2) Our study on QuixBugs
con�rms that both generate-and-validate approaches and synthesis-
based approaches work, but on di� erent bugs.

The potential future improvement of program repair tools.Al-
though the repair rate of QuixBugs is higher than the exist-
ing benchmarks of Defects4J and IntroClassJava, still 33/40 of
buggy programs are not able to be repaired with correct patches.
For instance, some bugs that could be repaired with a simple
one-liner �x (e.g., GCD) are not able to be automatically re-
paired by any repair tool. Our empirical study suggests poten-
tial future improvements of program repair tools.

First, we observe the generate-and-validate approaches (e.g.,
Arja and JGenProg) based on genetic programming, commonly
generating complex repair code. This results in redundant code

being repeatedly used in multiple locations of the buggy pro-
grams, which are not necessary for repairing the bugs. The
redundant and complex codes lead to the di� culty in patch
understanding for researchers and developers. This has been
discussed by Yuan and Banzhaf [14], we advocate the future
improvement in the simplicity of repair code into the search
process of genetic programming algorithms.

Second, we observe that program repair tools tend to gener-
ate high-granularity patches, which results in the abstract syn-
tax tree (AST) edit operations often appearing in the root nodes
of the buggy statements. These coarse-grained repair opera-
tions are not e� ective for repairing �ner-grained bugs, such as
those that can be repaired by swapping two variables or re-
placing incorrect reference variables (e.g.,BUCKETSORTand
GCD). Thus, we consider lower-granularity patch generation
will bene�t future program repair research.

Third, program repair tools could bene�t from more diverse
�xing ingredients, including1) New operators: for example, in
Section 4.2 we explained the absence of operators for repair-
ing BITCOUNT; 2) Repair patterns: some considered repair
tools such as JGenProg and Cardumen only consider ingredi-
ents taken from the buggy program, which not enough to repair
a bug;3) New code synthesis mechanism: for example, a re-
pair tool could use a new mechanism to create patches with
visibleandinvisiblemethod invocations, The visible and invisi-
ble method invocations are respectively referring to the method
that exists in the buggy programs and widely used utility pack-
ages (e.g., Commons Math project). In the considered 10 repair
tools, we do not observe any patches with an invisible method
invocation.

7. Related Work

7.1. Datasets of Bugs

The benchmarks used in automatic program repair research
include Introclass [9], ManyBugs [9], SIR [44], Code�aws [53],
Defects4J [10], IntroClassJava [43], Bugs.jar [47], Bears [45],
and Defexts [46].

Smith et al. [20] evaluate over�tting patches generated by
GenProg and TrpAutoRepair on IntroClass. Le et al. [21] sys-
tematically characterize the nature of over�tting in semantics-
based automatic program repair on the IntroClass and Code-
�aws benchmarks. Ke et al. [54] evaluate SearchRepair on
IntroClass. Qi et al. [18], Mechtaev et al. [55], Long and Ri-
nard [56] evaluate repair approaches on ManyBugs. Stratis and
Rajan [57] evaluate their approach on SIR. Nguyen et al. [5]
propose SemFix and evaluate it on SIR. Papadakis et al. [58]
collect and analyze mutant quality indicators based on Code-
�aws. Chekam et al. [59] propose a new technique for mutant
selection and evaluate their work on Code�aws. Martinez et
al. [22] and Yu et al. [34] report on their experiments using
Defects4J. Xiong et al. [32] propose the ACS repair tool and
evaluate it on four projects of the Defects4J benchmark. Wen
et al. [3] propose CapGen, a context-aware patch generation
technique and evaluate this technique on the Defects4J. Hua et
al. [11] propose and evaluate SketchFix on Defects4J. Wen et
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al. [3] and Le et al. [60] propose and evaluate their repair tech-
nique on IntroClassJava.

The recent work by Durieux et al. [30] conducted a large
scale empirical study on �ve benchmarks, Defects4J, Bears, In-
troClassJava, Bugs.jar and QuixBugs. However, they do not
provide any assessment for the generated patches.

To the best of our knowledge, our study is the �rst ever to
assess 338 patches for QuixBugs.

7.2. Patch Correctness Assessment

Synthesizing new inputs for patch correctness assessment
has been studied in a few papers. Xin and Risse [36] propose
Di� TGen to identify over�tting patches with tests generated by
Evosuite [38]. Those tests are meant to detect behavioral di� er-
ences between a generated patch and a human-written patch.

Xiong et al. [12] propose PATCH-SIM and TEST-SIM to
heuristically determine patch correctness by comparing the ex-
ecution similarity of the original and newly generated tests be-
fore and after the patch.

Yang et al. [37] propose Opad and Gao et al. [61] propose
Fix2Fit, two approaches based on implicit oracles for detect-
ing over�tting patches that introduce crashes or memory-safety
problems. These two approaches for automatic patch correct-
ness assessment cannot be applied to QuixBugs which contain
Java programs with no low-level memory problems.

Tan et al. [62] aim to identify the over�tting patches with
prede�ned templates to capture typical over�tting behaviors.
While their approach is static, our approach is dynamic. In our
study, the test inputs are executed and the invariants are cap-
tured from program runtime behavior in order to detect over�t-
ting patches.

Yang and Yang [25] study invariants generation to infer be-
haviors of generated patches. Their study shows that the ma-
jority of plausible patches (92/96) expose di� erent runtime be-
haviors. Our study also considers invariants based patch assess-
ment, but at a much larger scale: �rst, our dataset is three times
larger (338 versus 96 patches) and second, we also measure the
accuracy and false positives which have not been done in [25].

8. Conclusion

We have presented a novel program repair empirical study,
studying the QuixBugs benchmark [13] and 10 repair tools. We
have compared three automated patch assessment techniques
over 338 generated patches. Lastly, we have comprehensively
studied the accuracy and false positives of the three consid-
ered assessment techniques. Our empirical study yields major
�ndings for program repair research:1) It is possible to repair
programs with no passing tests at all (only failing test cases);
2) Patch assessment withRGTEvosuitehas the highest accuracy
over the three considered techniques in discarding over�tting
patches. Finally, our empirical study results in 338 patches with
correctness labels, which is a valuable asset for future study on
over�tting in automatic program repair.
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