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A Comprehensive Study of Automatic Program Repair on the QuixBugs Benchmark
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Abstract

Automatic program repair papers tend to repeatedly use the same benchmarks. This poses a threat to the external validity of

ndings of the program repair research community. In this paper, we perform an empirical study of automatic repair on a benchmat
of bugs called QuixBugs, which has been little studied. In this paper, 1) We report on the characteristics of QuixBugs; 2) We stud
the e ectiveness of 10 program repair tools on it; 3) We apply three patch correctness assessment techniques to comprehensiy
study the presence of over tting patches in QuixBugs. Our key results are/40 baggy programs in QuixBugs can be repaired

O with at least a test suite adequate patch; 2) A total of 338 plausible patches are generated on the QuixBugs by the conside
Q tools, and 53.3% of them are over tting patches according to our manual assessment; 3) The three automated patch correctn

@\

W

S

7,

2,
q—
>
q—

LO

034

Lo
)
00)

>
X
S

assessment technique& Tevosuite RG Tinputs ampling@NAG Tinvariants: achieve an accuracy of 98.2%, 80.8% and 58.3% in over tting
detection, respectively. To our knowledge, this is the largest empirical study of automatic repair on QuixBugs, combining bott
quantitative and qualitative insights. All our empirical results are publicly available on GitHub in order to facilitate future research
on automatic program repair.

Keywords: Automatic program repair; Patch correctness assessment; Bug benchmark

1. Introduction other benchmarks. Even worse, those claimed improvements,
) o . if they only hold on the benchmark, maybe decorrelated from
Automatic program repair aims to provide xes to software for rea| usages by practitioners. Fortunately, the importance of
bugs in an automated way. Test suite based repair, notably iRyiernal validity is acknowledged by many researchers.
troduced by GenProg [1], is a widely studied family of tech-  prgplem: Research on program repair tends to repeatedly
niques in program repair. In test suite based repair, test suitgge the same benchmarks. This is a threat to the external valid-
are used as an executable speci cation of the program, withy, of the results of our research community.
at least one failing test that reveals the bug. Test suite baseg As building sound and conclusive empirical knowledge is
repair can be further divided into generate-and-validate tectyey to science, reducing this major threat of external validity in
niques and synthesis-based techniques. Generate-and-validg{g context of program repair is the main motivation of this pa-
techniques, such as GenProg [1], Astor [2], CapGen [3], rStyer. To reduce the threat, we aim at doing a empirical program
generate as many patches as possible and then use the test SHQE?air study on a new and well-formed bug benchmark.
to validate if the patch makes all tests pass. On the other hand, |, this paper, we perform an automatic repair empirical study

< synthesis-based techniques such as AutoFix [4], SemFix [5bn a benchmark called QuixBugs which was recently presented

and Nopol [6] rst extract constraints based on test suite execClpy Lin et al. [13]. QuixBugs is a program repair benchmark
tion and then synthesize a patch [7, 8. with 40 buggy algorithmic programs speci ed by test cases.
Recent automatic program repair papers tend to repeatediyhe puggy programs are both available in Python and Java.
use the same benchmarks. In program repair for C code, the this paper, we conduct the following four experiments on
ManyBugs [9] benchmark or its derivative is domina_nt. In th?Quixbugs: 1) We prepare QuixBugs for automatic program
context of program repair for Java, Defects4J [10] is used ifepair in Java; 2) We select ten representative test suite based
almost all evaluations of recent program repair approaches, iriépair tools, Arja [14], Cardumen [15], Dynamoth [16], JGen-
cluding recently [11, 3, 12]. However, repeatedly using theprog [2], IMutRepair [2], JKali [2], Nopol [6], NPEFix [17],
same benchmarks poses a threat to the external validity of thgpg [2], and the Java implementation of RSRepair [18], and
community's knowledge. The main threat is that the improve-gyacute them over all buggy programs of QuixBugs. This re-
ment that we now observe in the literature may only be validits in 1640 buggy programs being repaired by 338efient
for the benchmark under consideration but would not hold forplausible patches; 3) We perform manual assessment for the

generated plausible patches and manually classify them as 158

Corresponding authors correct patches and 180 over tting patches; 4) We assess the
Email addressesheye@kth.se (He Ye), matias.martinez@uphf.fr correctness of the plausible patches by three automated patch
(Matias Martinez)thomas@durieux.me(Thomas Durieux), correctness assessment teChniquEvosuite RGTInputS ampling

martin.monperrus@csc.kth.se  (Martin Monperrus)
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andGTnariants WWe compute the accuracy of these three autothreat of our study. Section 6 discusses the new ndings of us-
mated techniques are 98.2%, 80.8% and 58.3%, respectiveiyng QuixBugs and the future improvements for program repair

This novel empirical study on a benchmark never used in @ools. Section 7 compares the related work of our study and
program repair context provides valuable ndings that improvewe conclude our study in Section 8.
the external validity of program repair research. Our empirical
study sets a baseline for future research of automatic prograll ganchmark preparation
repair on QuixBugs.

To sum up, our contributions are: QuixBugs by Lin et al. [13] is a benchmark of 40 bugs from

40 classic algorithms such as sorting algorithmbwsket sort,

f(; S::Irvr\ézzaselm(r):hogn%l;i/(::?j;::;;s tlézz?LeeI(\)/\r/|?r]u$<rtg&rl1t§ V:?perge sort and quick sorfll bugs of QuixBugs were collected
om theQuixey Challengef26], which consisted of giving hu-
data about the characteristics of QuixBugs. Quixey geE26] gving

man developers one minute to x one program with a bug on a

~ The con rmation of two empirical facts of program re- single line. The original QuixBugs benchmark contaihiA
pair, improving their external validity:1) Our manual  Set of 40 buggy programs available both in Python and in Java;
assessment shows that 53.3% of generated patches ageFor 31 out of 40 programs: JSON les with a set of inputs
over tting, this con rms that the state-of-the-art of pro- and expected outputs for each progréyén engine that takes
gram repair tools produces a large number of over tting@ Program name, executes the program using the inputs from the
patches [19, 20, 21];2) Our empirical study shows the corresponding JSON le, and prints the expected and obtained
considered automatic program repair tools are able to coutput;4) For the remaining 9 out of 40 programs, a Java class
rectly repair seven buggy programs, this con rms the statéhat has encoded the inputs and outputs and prints the obtained

of-the-art program repair tools also produce correct patcHagput.
[18, 22]. However, the initial version of QuixBugs was not usable for

doing automatic program repair in Java. Monperrus [7] states

Three new and important ndings about automatic pro-that, in the context of test suite based repair, a “usable” bench-
gram repair:1) Certain program repair tools are able to mark must have [27]1) A clear, explicit, and not biased con-
repair programs with only failing test cases and no passstruction methodology2) Regression oracles. For test suite
ing tests at all2) It is feasible and eective to use auto- pased repair approaches such as GenProg [1] the oracles are the
mated patch assessment techniques to identify over ttingest suites: the failings test cases are the bugs oracles and as-
patches with an accuracy of up to 98.28);Invariants  sert the presence of a bug, while the passing test cases are the
based patch assessment ets from a large number of regression test cases that assert the correctness of the program
false positives. w.r.t the inputs-outputs encoded in the test suBjeReal bugs
(i.e., not seeded).

Unfortunately, the initial version of QuixBugs does not ful-
H some of the aforementioned criteria. We summarize the
problems of the initial version of QuixBugs a4) It did not
prowde any regression oracle, this not ful ll the second re-

This paper supersedes a previous version [24] presented @tiirement of a usable benchmark (bugs and regression oracles);
the International Workshop on Intelligent Bug Fixingn com-  2) Programs contained compilation errors (for 5 programs), this
parison, this article makes the following extensions. The prodoes not satisfy the rst requirement of a usable benchmark (a
gram repair empirical study involves ten repair tools (expand<¢lear, explicit and not biased construction methodology)n-
ing from ve in the previous version). This new work presents correct values to test buggy programs (for 3 programs), which
and discusses the 338 plausible patches versus only 64 patcteso not ful ll the rst requirement of a usable benchmark;
discussed in the previous version. This study considers a third) Missing test assertions (for 9 programs), this violates the sec-
automated patch assessment technique based on invariants. drad requirement of a usable benchmaskMissing a ground
our knowledge, this technique has only been studied by Yantruth Java version (for all programs), without the ground truth
and Yang [25], and at a smaller scale (our dataset of patches jmtches provided, the correctness assessment of generated patche
three times larger than that of [25] — 338 versus 96). This jouris harder.
nal extension provides novel results that compare the accuracy To overcome the mentioned limitations that hamper its use
of three assessment techniques and discuss the false positlvetest suite based repair approaches, we introduce a new ver-
problem of invariants based patch correctness assessment, betbn of QuixBugs supplemented with test cases for reproduc-
of which have never been reported before. ing buggy behaviors and a ground truth version for evaluating

The remainder of this paper is organized as follows. Secautomatic repair patches. This new version of QuixBugs was
tion 2 presents how we prepare a new version of QuixBugslready peer-reviewed and accepted by the QuixBugs authors
for the usage of automatic repair for Java programs. Section &nd integrated to their public repository at GitHub. The steps
presents four research questions (RQs) of our study and correse carried out for creating the new version are:
sponding methodologies for these RQs. Section 4 presents our 1) Fix uncompilable Java programs. By compiling the ini-
empirical results to answer the RQs. Section 5 analyzes thigal version Java programs of QuixBugs, we noticed that there

2

Experimental data that is made publicly available for fa-
cilitating future research [23]. Our 338 plausible patches
on QuixBugs and their correctness labels are consolidate
for future studies on program repair.



were compile errors in some programs ((BREADTHFIRST.  3.1. Research Questions

SEARCH. Some compilation errors were designed as part of oy this empirical study on program repair for QuixBugs,

buggy programs. However, most automatic repair tools do dyge pose the following research questions (RQs):
namic analysis of buggy programs. Hence, we need them all to

be compilable and able to run the original buggy programs. " RQ1: What are the main characteristics of the QuixBugs
2) Fix incorrect test data. To test 31 out of 40 buggy Java benchmark?
programs, QuixBugs provides pairs of inputs and expected out-
puts written in JSON les. However, we found that some ex-
pected outputs from prograrKNAPSACKSQRTandPASCAL
were incorrect. Once we detected all incorrect inputs and out-  ~ RQ3: To what extent are the generated patches for QuixBugs
puts, we corrected them. correct?
3) Creation of JUnit tests from JSON les. QuixBugs uses
a speci ¢ test driver based on JSON test cases. It executes the =~ RQ4: To what extent do automated patch assessment tech-
program using the inputs, and prints both the expected and ac-  nhiques accurately classify over tting patches?
tual outputs. However, automatic repair tools usually expect

JUnit tests as oracle speci cations: each test executes the pro- . . X
gram passing the inputs via parameters and then compares tﬁlé'dmg the type of bug, lines of code (LOC), JUnit tests, code

obtained output with that one expected via assertions. Thus, weverage, etc. In _RQZ’ we con5|_der one k|no_l of automatic re-
implement an automatic JUnit test generator to generate JU Ir .calle.d test suite l_::asgd repair. In test suite based repair, a
tests from the JSON les. In total, we generated 224 JUnit test ug is said to be repaired if a patch makes all tests pass. In that

(test methods in JUnit) for the 31 programs having their inputs-case’ such a patch is callsbt suite adequgte patan plausi-
outputs encoded in the JSON les. ble patch We focus on how many test suite adequate patches

4) Creation of JUnit tests from ad-hoc assertion-less testsC.OUId be generated by the state-of-the-art test suite based repair

There are 9 out of 40 Java programs from QuixBugs that argpproaches. In RQ3, we conduct a manual as_sessment to eval-
tested through a simple ad-hoc main method that starts withate how many paFches generated in the experlm_ent of RQ2 are
encoded inputs, calls the program using them as arguments, a atua"y cor_rect. Finally, in R.Q4’ we study theaztiveness of
nally prints the obtained output. This method is not usable byt. ree techniques to automatically .cIaSS|fy colrrect and over t-
a test suite based program repair tool. Thus, we have manualé_""g patches, and we compare their results with those from the
rewritten those methods to produce 35 JUnit tests for these anual assessment.
programs. In total, our preparation has resulted in 259 JUni
test methods over 40 programs. 2. Protocols

5) Creation of ground truth Java programs. By default,  This section presents the protocols of our empirical study of
the QuixBugs does not provide a ground truth version for thedutomatic program repair on QuixBugs.
Java buggy programs. Automatic program repair researchers
need those ground truths to compare them with the generatéd2.1. RQ1: QuixBugs Benchmark Analysis
patches to assert their correctness. We created ground truth ver- Bug understanding [28] is important for designing program
sions based on those provided by QuixBugs originally writterrepair tools and to analyzing the ectiveness of those tools.
in Python. For each buggy program of QuixBugs, we gather and compute

To summarize, QuixBugs was initially not usable for auto-the following information:
matic repair tools in Java. In this section, we presented the tasks
we carried out to build a new version of QuixBugs that can belYPes of bugs.The previous research reports the existence of
used to evaluate the ectiveness of the test suite adequate rethe observational correlation between the bug x and the cause
pair tools. The new version of QuixBugs contains JUnit test orOf bugs [29]. In our study, we collect and present the type of
acles and ground truth programs, it was public peer-reviewed bpug. QuixBugs contains various types of bugs such as incorrect
the QuixBugs authors, organized with Travis and Gradle comcomparison operators, incorrect array slice, etc. This allows us
ponents. All those changes have already been contributed to ti@ analyze the capability of the program repair tools to repair
research community on the QuixBugs repository. buggy programs and to determine the most repaired bug types.

" RQ2: How many buggy programs of QuixBugs can be
automatically repaired with test suite adequate patches?

_ In RQ1, we are interested in the statistics of QuixBugs, in-

N Numerical characteristicsWe compute numerical character-
3. Empirical Study istics: the lines of code (LOC) of the program, the number of
passing JUnit tests, failing JUnit tests, the test execution time

We now present our empirical study on thesetiveness of db h We rel Cobert leulate th
test suite based repair approaches on the QuixBugs benchmafk. ranch coverage. We rely on Cobertuacalculate the
ranch coverage for each program.

The empirical study covers several dimensions of automatic re=
pair: benchmark analysis, repair ectiveness, patch correct-
ness assessment. First, we list the research questions (RQs) OflCobertura websitehttp://cobertura.github.jo/cobertural
our work, we then describe the research methodology for eackd september 29, 2020)

RQ.

(vis-



Input domain. We extract the program preconditions and thean oracle, which is not able to completely specify the expected
input domain of each program. The program preconditions arprogram behavior. To assess the correctness of patches gen-
constraints for the input domain. We discuss this to remind therated for Quixbugs' buggy programs, we perform the manual
future work on QuixBugs to sample tests that should be awarassessment as previous researchers have done on other bench-
of the program preconditions. marks [32, 3, 22, 14]. We manually compare the automatically
generated patches with the human-written patches. If a gener-
Failures types. We manually collect the failure symptoms when ated patch is identical or semantically equivalent (i.e., the actual
executing test cases for each buggy program of QuixBugs datagghavior is the same) to the human-written patch, it is consid-
A bug can producel) An incorrect output that triggers an as- ered as correct. Otherwise, a patch is deemed as over tting if
sertion fail; 2) An error in the execution (e.g., array index er- 1) it does nO{partia”y X the bug, or2) it introduces a new
ror); 3) An exception thrown by the program (e.g., null pointer bug. To overcome the bias of manual assessment, all results are
exception or stack over owp) A timeoutin nite loop. discussed among at least two authors. Our evaluation of patch

. - _ . .. __correctness is publicly available on our GitHub repository [23].
Unigue characteristics.We discuss the unique characteristics

of the QuixBugs dataset compared with the benchmarks from

the literature. 3.2.4. RQ4: Automated Patch Correctness Assessments

] - . As shown in previous research [12, 33], manual assessment
3'2'_?' RQS' Repairability of Qm_xBugs_ ical stud B of program repair patches is a hard, time consuming and biased

° conl uct our program repair empirica Stul ycl):n Quhlx U9%ask. Thus, we also consider three automated patches correct-
we rst select appropriate program repair tools. For this, Wepqqq assessment techniques to identify over tting patches, pro-

consider threfa ;ntenal) The repair too_Ittrnugt ﬁﬁ.”d'e Java Pro” hosed by previous research: a) Using automatically generated
grams as QuixBugs programs are written in this programmm{{ests based on a ground truth version (i.e., the human-written

Iangl_Jagé; 2) Th? re_zrphair tool _mustlimplent])ent ak;[ﬁslt suite_lbft;l)lse atch) [34]; b) Using automatically generated tests by a pro-
repair approach3) The repair tool must be publicly-available gram speci ¢ generator based on a ground truth version [35];

and continuously maintained. ¢) Using dynamic program invariants based on a ground truth

According to these criteria, we nally select ten of program g o [25]. We now describe how each of those techniques
repair tools: Arja[14], JGenProg [2], JKali [2], IMutRepair [2], works

Cardumen [15], Tibra [2], Nopol [6], Dynamoth [16], NPE-

Fix [17] and the Java implementation of RSRepair [18] by [14]. Search-based test generation for patch assessmésing au-
The ten repair tools target Java programs, are test suite basggmated test generation is one way for assessing patch correct-
and are publicly available on GitHub. All the ten repair tools pegs [12, 36, 34, 37]. The idea of this technique is to generate
take as input the source code of a buggy program and the corrgay test cases that complement the already provided (poten-
sponding test suite which contains at least one failing test casgg|ly incomplete) test suite. In this paper, we consider Evosuite
and generate, when it's possible, one or more patches that makgg), a state-of-the-art automated test generation tool, for gen-
all test cases pass. We combine the patches generated dur@gting those new correctness assessment tests. We have chosen
our empirical study in [13] with patches generated from our re-gyosuite according to the results of [39, 33], which have shown
cent work [30]. Each of the ten repair tools has been executeghat Evosuite is the most ective tool for this usage. The
on all QuixBugs programs. We do not stop the repair prosearch-based test generator technique takes as input a ground
cess after nding the rst patch, and we consider all generatedyyth program that is used as oracles, which means that the out-
patches, even if there are several patches for the same bug. puts from the ground truth programs on given inputs are the
We carefully record and discusd) The number of bugs expected outputs (i.e., oracles), including both values and ex-
that are repaired by the considered 10 systé)ihe bugtypes  ceptions. Per the previous terminology, this patch assessment
of the repaired programs) How test cases impact the repair technique is nameRG Teyosuite Which is based on the ground

tools;4) The test failure symptoms of repaired programs. truth programs for test generation.
For each of the 40 buggy programs in the QuixBugs dataset,
3.2.3. RQ3: Manual Patch Correctness Assessment we invoke Evosuite a xed numben of times. Eventually,

Previous works have shown that program repair tools tengye obtainn di erent independent JUnit test suites for each
to generate a large number of over tting patches (i.e., awed reprogram. Since Evosuite is a randomized algorithm, we take
pairs). In our work, per the previous terminology [20, 12, 31],n = 30 per the recommended practice [40, 34]. We always re-
we use the term over tting to refer to those patches that pasgove those generated tests that fail on the ground truth version,
all human-written test cases (i.e., test suite adequate patch) bgécause they are ill-formed for our task. We execute these gen-
still do not correctly repair the bug. Those awed repairs areerated tests over the patches generated by the repair tools. In
produced because of the weaknesses of the test suite usedtRg assessment &G Teyosuite @ patch is assessed@eer tting

if it makes any automatically generated Evosuite test cases fail.
1 . . . , If no generated test fails, we consider that the correctness of the
Note, QuixBugs also contains Python implementation of those bugs, how- .
ever we focus on the Java implementations since few repair tools are availab@atCh |sunknown(and notcorrectbecause the generated tests

for Python.
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only sample the input domain, they do not assess the behavior ~ True Negative (TN): a patch classi ed as correct by man-

over the full input domain). ual assessment is classi ed as correct by an automated
assessment.

Program speci c test generationWe consider a second ran-

dom testing approach calléRIG Tinputs ampiing Which randomly ~ False Negative (FN): a patch classi ed as over tting by

samples the test inputs based on the ground truth programs. ~ Manual assessment is classi ed as correct by an auto-

RGTinputs amplingiS @n implementation of random testing [35] mated assessment.

for 'waBugs.' It samples the mput space a}ccqrdlng 0 a speci Finally, the accuracy of an assessment technique is computed
cation of the input space, a uniform distribution for sampling

and it uses the ground truth version as oracles [41]. If the\:Nlth the following evaluation formula:

ground truth version throws an exception on a generated in- TP+TN

put, the input is considered as invalid, the input is discarded. Accuracy= (TP+TN+FP+FN) @)

For implementingRG Tinputs ampling We manually identify the

domain of each input variable for each program in QuixBugs.

The test generator is con gured to sample the input space WitQ. Empirical Results

the goal of getting a xed number of valid test cases with no

exception. For each program in QuixBugs, we generate 300 We now present and discuss the empirical results of our four
test cases WitfRG Tinputs ampiing We run those test cases on all research questions.

generated patches of QuixBugs programs. In the assessment of

RGTinputsampiing @ patch is assessed ager tting if it makes 4.1, Results for RQ1: QuixBugs Benchmark Analysis

any randomly generated program speci ¢ test cases fail. Table 1 presents the characteristics of QuixBugs, including
the numerical statistics (e.g., LOC) and failure symptoms (e.qg.,
H}ﬁorrect output, null pointer exception). Program names are
ven in the rst column in alphabetical order.

Invariants detection for patch assessmeWfe consider a third
automated patch assessment based on invariants captured fr
ground truth program execution, such assessment techniqueq
called ground truth invariants, ak@,T\nvariantss AN invariant is

a property tha} hplds at a_certain ppint or points in a programType of bugs.The second column presents the type of bug in
A program pointis a specic plage in the source che, such a ach program. There are 17 drent bug types. The most fre-
|mmed|ately before a particular line of code. Invariants detec- uent bug types on QuixBugs ar&) Missing function calin

tion runs a program, observes th_e values that the program co Ve programs. In those buggy programs, function invocations
putes, and then reports properties that were true over the OQ{re missing. This means the patch that repairs this type of bug

served program executions. The invariants based patch asse’?ﬁﬁiically adds a function invocation. For example, to repair the

ment tech.nique rst infers program invariants fr'om the groundbug forFLATTEN the existing variable should be replaced by
truth version and uses them to assess over tting patches, pe tten(x); 2) Incorrect comparison operatdn four programs,

the technique of [25]. It executes the patched programs bas ere comparison operators includs, <, and >, etc. For

on the provided manual tests and checks whether all inferre xample iNQUICKSORT the operator is used instead of:
invariants still hold. In the assessment@invariants @ patch 3) Missing lines with a function cailh four programs. This b[Jg

is assessed awver tting if it violates any invariants hold for type refers to buggy programs that miss one or more lines of

ground truth program executions. To capture invariants in th%od For example. the x for the b OaralRAPIS to
ground truth programs and checking whether they hold for th? ©. Tor example, xror 1agy progr 'S

tured the tool Daikon [42 nsert an additional line of codmes.add(text)
captured programs, we use the tool Daikon [42]. This diversity of bug types implies that repair approaches

should also consider a diverse set of repair transformations: for

Accuracy of automated patch assessmdmt.evaluate the ac- example, some bugs could be repaired by replacing operators
%._g.,incorrect comparison operatdrother bugs could be re-

curacy of automated patch assessments, we compare the au

mated patch assessment results with manual assessment, whe ed by replacing code (e.greference to an incorrect vari-

manual assessment is considered as ground truth. Speci call Pe); or by_msertlng a new l'n? of code (e.gnls.s[ng lines
th a function cal)). This implies that, for repairing all of

we compute the corresponding false positives and true negatives".
uixBugs buggy programs, we need one or more approaches

as follows: capable of applying a wide set of repair transformations. Thus,
~ True Positive (TP): a patch classi ed as over tting by if one repair approach can repair most of the buggy programs
manual assessment is also classi ed as over tting by arin QuixBugs, it would mean that this approach is general in
automated assessment. essence.

False Positive (FP): a patch classi ed as correct by man-
ual assessment is classi ed as over tting by an automated
assessment.



Table 1: Descriptive Statistics about the QuixBugs Benchmark.

Buggy Program Name Bug Type LOC Passing  Failing Code  Exe Failure Symptoms
Tests Tests Coverage Sec.
BITCOUNT Incorrect logical operator 10 0 9 100% 900 timémunite loop
BREADTH_FIRST.SEARCH Missing boolean expression 30 4 1 100% <1  array index error
BUCKETSORT Reference to an incorrect variable 17 0 6 100%<1 incorrect output
DEPTHFIRST.SEARCH Missing lines with a function call 23 4 1 100% <1 stack over ow
DETECT.CYCLE Missing boolean expression 17 4 1 100% <1  null pointer
FIND_FIRST.IN_SORTED Incorrect comparison operator 22 4 3 900  1p§mecufin nite loop (1)
array index error (2)
FIND_IN_SORTED Missing + 1' 19 5 2 100% <1 stack over ow
FLATTEN Missing function call 18 1 6 83% <1 stack over ow
GCD Expression swap 10 0 5 100% <1 stack over ow
GET_FACTORS Wrong constructor call 17 1 10 100% <1 incorrect output
HANOI Reference to an incorrect variable 53 0 7 100% <1 incorrect output
IS_VALID PARENTHESIZATIONI Other code replacement 15 2 1 100% <1 incorrect output
KHEAPSORT Missing function call 29 1 3 100% <1 incorrect output
KNAPSAC Incorrect comparison operator 30 4 6 100% 2 incorrect output
KTH Reference to an incorrect variable 25 3 4 100% <1 array index error
LCS.LENGTH In.cor.rect array slice . 48 1 8 95% <1 incorrect output
Missing boolean expression
LEVENSHTEIN Missing + 1' 15 1 6 100% <1 incorrect output
LIS Missing logic 27 0 4 91% <1 incorrect output
LONGEST.COMMON_SUBSEQUENCE Missing function call 14 6 4 91% <1 incorrect output
MAX _SUBLIST_SUM Missing function call 13 2 4 100% <1 incorrect output
MERGESORT Incorrect arithmetic expression 40 0 12 100%<1 stack over ow
MINIMUM _SPANNING.TREE Missing logic 67 0 3 72% <1 concurrent modi cation
NEXT_PALINDROME Missing *- 1' 28 4 1 87% <1 incorrect output
NEXT_PERMUTATION Incorrect comparison operator 32 0 8 83% <1 incorrect output
PASCAL Missing ¥ 1' 29 1 4 1000 <1 Aarrayindexerror (3)
incorrect output (1)
POSSIBLECHANGE Missing boolean expression 23 0 9 100% <1 array index error
POWERSET Missing logic 24 1 4 100% <1 incorrect output
QUICKSORT Incorrect comparison operator 37 12 1 87%<1 incorrect output
REVERSELINKED _LIST Missing Assignment 12 1 100% <1  null pointer
RPN.EVAL Expression swap 28 3 100% <1 incorrect output
SHORTESTPATH_LENGTH Other code replacement 49 2 2 92% <1 incorrect output
SHORTESTPATH_.LENGTHS Expression swap 31 0 4 100% <1 incorrect output
SHORTESTPATHS Missing function call 55 0 3 100% <1 incorrect output
SHUNTING_YARD Missing lines with a function call 31 0 4 100% <1 incorrect output
SIEVE Incorrect method called 35 1 5 75% <1 incorrect output
SQRT Incorrect arithmetic expression 9 1 6 100% 360 tim@oaotte loop
SUBSEQUENCES Missing lines with a function call 22 2 12 100% <1 incorrect output
TO_BASE Expression swap 14 0 7 100% <1 incorrect output
TOPOLOGICALORDERING Incorrect method called 25 0 3 100% <1 incorrect output
WRAP Missing lines with a function call 22 0 5 75% <1 incorrect output
Total - 1,034 70 189 - - -

Program size. The third column gives the lines of code (LOC) a small program size (which can lead to a small search space),
per program ranging from 9 to 67 lines, which can be considthe time complexity or space complexity of those programs is

ered as small. However, we note that 14 are recursive prograns®metimes non-trivial.
and 13 programs contain nested loops. It means that, despite

6



Characteristics of test suitesTable 1 also summarizes the statis- s i
tics about JUnit tests: the fourth and fth columns present the .
) . A " SHORTEST_PATH_LENGTH! 91
number of passing tests and failing tests. As we discussed |
. . . DEPTH_FIRST_SEARCH 59
Section 2, all programs from the new version of the QuixBugs
have at least one failing JUnit test to expose the bug, whicl
means that the prerequisite of test suite repair is met. Ther
are 15 programs with no passing tests. All benchmarks of th DETECT.CYCLE
literature, to our knowledge, contain at least one passing tes
Passing tests are important for repair approaches to model ti 1 e
expected behavior of the program, which means that, withou MERGESORT|| | Cardumen
these passing tests, synthesis-based approaches such as Nc next_permutaTionll 1 mm Dynamoth
have degenerated synthesis problems when repairing QuixBu tevensrrem (] | B GenProg
programs. KNAPSACK ] = J§a|LR .
The sixth column gives the branch coverage information ol ., puemeszamonf] | JN P“EFi:pa'r
JUnit tests. We observe that the majority of the QuixBugs are ol 1 m= Nopol
completely covered by the test cases (i.e., coverage 100%). Tl cer macronsll 1 RSRepair
least covered programiiNIMUM _SPANNINGTREB has a mmm Tibra
0 . . . . i FIND_IN_SORTED 1
72% of coverage. This high coverage implies that, for mos

of the branches from the buggy programs, there is at least one _. _ o . .
test case that executes it. Thus, any candidate patch applied on':Iglure 1: The distribution 010303;3 QuixBugs patches by 10 repair

those branches will be executed at least once.

Exec_uhor} t|me.Thhe seventh _(r:rc:lumn p/r;;ents the testhexecu\-Nith signaturegetfactor(Integer n): ListInteger. The pre-
tion time for each program. There are/&J programs Whose ., ition we found is that the value for integer variableust

tests_ run in less than 2 seconds, Wh'Ch suggests that prograg greater than 1. Otherwise, the program is meaningless when
repair will evaluate fast each candidate patch, and eventually, . input is a negative integer or zero. And the precondition vi-

repair approaches can completely naylgate thg sgarch SPaGfated test case generation will in uence the patch assessment
For those 3 programs where the bug triggers a timeaonite results in our study

loop, the tests timeout after 60 seconds, which explains the 3

large execution time values of progranBiTCOUNT, SQRT  ynique characteristics of QuixBugsComparing the benchmarks
andFIND_FIRSTIN_SORTED. of literature [9, 43, 10, 44, 45, 46, 47], we found three unique

Fail The | | he fail characteristics in QuixBugg:) There is a focus on algorithmic
ailure symptoms.The last column presents the failure symp- tasks such asorting algorithms search algorithmstowers of

toms. We observe 6 derent symptoms. There are 26 programs, i puzzle whose time complexity or space complexity is

\fNi.tIh incoSrrect output fz_ai:]grss, 5 pro?rgms (\;vm;mlzk o;;er OW" non-trivial. The existing benchmarks from the literature (such
aiures, < hprograrrti]s W't In exf0$t 0 (2)un S fallures rﬁrcl)l- as Defects4J [10] and Bears [45]) contain buggy programs of
grams withtimeoufin nite loop failures, 2 programs witmu real and large open-source libraries, with procedures and mod-

fqllnter Ellures and 1 fprogdrarr’? witiconcurrent mgg':ft'og ules that implement several functionalities. That is, a buggy
ailure. Moreover, we found that two prograrrié an program of those benchmarks is not a single textbook algo-

FIND_FIRSTIN_SORTED have test cases that expose rithm implemented in one single class as each program from

ent failur_es. In additiqn to the diversity of_ bug_ types we Pré-0ixBugs is; 2) There are 180 programs with only failing
viously discussed, QuixBugs also has a diversity of test fa”ur‘“?ests. To our knowledge, all other benchmarks in the litera-

symptoms. This involves that automated program tools must e always contain at least one passing ®5The benchmark
take into account dierent situations after the bug is executed. ., .. < 3 timeoin nite loop failures and 5 stack over ow
For example, in the case dimeoudn nite loop failures, an failures, which is uncommon in bug benchmarks. Thus, using

approach T"“St av<_)|d handling itself, an_d in the cas_etatk QuixBugs for program repair will give new insights into the
over ow failuresor index out of bound failurethe repair tool successes and limitations of current repair tools

must proceed after the failure and complete the dynamic pro-

gram analysis such as fault localization. Answer to RQ1: QuixBugs is a valuable dataset for study-
ing program repair. It has a large diversity of bug types, @s
well as a diversity of failure symptoms. It contains buggy
programs with unique characteristics compared to exist-
ing program repair benchmark$) Complex algorithmic
tasks;2) Programs with no passing tes8;Programs with
a timeoutin nite loop.

Input preconditions.Preconditions of the input domain for each
program are important in our study as we use them as the co
straints to automatically generate patches and to discard ove
tting patches. We computed them for the 40 programs. All
preconditions are given in our online appendix [23]. Just tg
mention one as an example, the progi@ET_FACTORfactors

an integer value using trial division. It has a unique function
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Table 2: Number of generated patches per tool. Table 3: Repaired bug types.

Repair Tool # Patches # Repaired Programs  Bug Type (Identi ed) # Repaired Programs
JGenProg 164 4 Incorrect comparison operator /43 knapsack
Arja 113 4 nextpermutation
RSRepair 31 3 quicksort
NPEFix 9 2 Incorrect arithmetic expression /2 mergesortsqrt
Cardumen 5 5 Expression swap /2 shortestpath.lengths
Tibra 4 2 rpn_eval
Nopol 4 4 Missing logic 43 powersetlis
JKali 3 2 Missing+ 1 2/I3 nd.in_sorted leven-
JMutRepair 3 3 shtein
Dynamoth 2 2 Other code replacement /21 is_valid_parenthesization
Reference to an incorrect variable /31 hanoi
Total 338 patches 16 patched programs Wrong constructor call 1 getfactors
Missing boolean expression /4 detectcycle
Missing line with call 14 depth rst search

4.2. Results for RQ2: Repairability of QuixBugs

The execution of the ten repair tools produced on the 40

buggy programs of QuixBugs produced 1,470 program repaiprogram repair has to be considered by combining diverse re-

patches. Surprisingly, we observe that the repair tools generaggir approaches together, and not by building a single silver-

duplicated patches. We conduct a sanity check and discard sybullet system.

tactically duplicated patches per repair tool. As a result, we dis-

card 1,132 duplicated patches and obtain 338 unique patchesThe repaired bug typesRecall Table 1 introduces 17 types of
bugs in QuixBugs. In our empirical study, there arélTtypes

Repaired bugs.We present the results of generated unique patalfdsugs that are patched by the considered automatic repair ap-

from our empirical study in Figure 1. In total, we have obtainedproaches. We summarize the repair bug types in Table 3, where

338 patches that repair 16 dirent buggy programs. Overall, the rst column gives the name of the bug type. The second

40% of QuixBugs can be repaired with at least one test suiteolumn gives the number of repaired programs belonging to

adequate patch. Note that we have more patches than repairg@ bug type over the total number of this bug type. We list

programs becausé) Some bugs are repaired by more than onethe repaired programs in the third column. The most repaired

repair tools (e.g.QUICKSORT; 2) Some repair tools gener- type of bug is thencorrect arithmetic expressionvith 3 pro-

ate two or more not duplicated patches for a speci ¢ bug (e.g.grams. The 3 repaired programs were repaired by @raint

Arja for QUICKSORY). Note that this empirical study is novel repair approaches. This means that a particular bug type can

and at scale. To our knowledge, this is the most compreherbe repaired using derent repair strategies, the reason is that

sive QuixBugs repair empirical study done ever, with the largesthere are dierent strategies to repair the same bug type. For

number of repair tools and the largest number of patches genesxample, Nopol is able to synthesize new statements that use

ated. the correct variables instead of the incorrect ones, while JGen-
Prog replaces the buggy statement having the incorrect variable

E ectiveness of repair toolsWe summarize the eectiveness by another one similar that has the correct variable.

of repair tools in Table 2. The rst column gives the name ofthe ~ |, this empirical study, the considered repair tools could not

repair tools. The second and third columns indicate the numb%pair 7 bug typesl) Incorrect logical operatog) Missing -

of patches generated and the number of programs they repair, 3) Incorrect array sliced) Incorrect method calleds)

respectively. Cardumen is the approach that repairs the Iargeﬁﬁssing function call;6) Missing Assignment;7) Missing

number of buggy programs: 5 buggy programs in total can bgyithmetic expression.

repaired. Notably, we observe in Figure 1 that 4 of them are \\e now study the reasons for what some types could not

only repaired by Cardumen. This shows the extracted code tenpy, repaired by any approach. We identify three main reasons:

plates in Cardumen are diverse ancketive. Moreover, JGen- 1) No repair operator implemente@) No xing ingredients;

Prog and Arja are two systems that generate the largest NUM) | imitation of repair implementations.

ber of test suite adequate patches (164 and 113 patches). This g repair operator implementedNo repair tool repaired

is because JGenProg and Arja leverage multi-objective genetige bug typencorrect logical operatorfrom BITCOUNT pro-

programming to evolve multiple patches over a series of gefgram. The ground truth patch updates the a logical operator

erations progressively. There are 4 programs that are repaired » ig«g" Even if JMutRepair is able to generate patches

by more than three repair tooldlS, QUICKSORT SHORT-  tnat change logical and relational operators, it does not imple-

ESTPATHLENGTHSand DEPTHFIRSTSEARCH The re-  ment any mutation of the operat6r” .

maining 12 programs are repaired by only one repair tool. This  No xing ingredients. The advantage of redundancy based

implies that speci c repair strategies are useful to repair speci Crepair approaches such as JGenProg, Arja or Cardumen is that

bugs. We believe that the global ectiveness of the automatic they create patches from code already written in the buggy pro-
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gram. Those approaches could eventually repair a bug of typgarison operator froh<=" to“ <", at a location that no repair
Incorrect logical operator if the patch’s code (in this case, a bitools identify as suspicious. This suggests the need for alter-
nary expression with an operator of & ) is present in the buggynative fault localization strategies to handle more diverse test
program. Unfortunately, that is not the caseBITCOUNT A failure symptoms, such as pattern-based bug localization [49].
similar case happens with bug Missing function call: the ground

truth patch for buggy prograrSIEVE replaces a method in- Onthe di erences of program repair tools on other benchmarks.
vocationany by all. However, in that buggy program, there Now, we compare the program repair tools’ drences depend-

is no piece of code that invokesl. As a consequence, the ing on the benchmark, by comparing the repairability over De-

redundancy-based repair approaches considered in this empifects4J and Quixbugs. The considered Defects4J patches are
cal study cannot synthesize a x. those of Durieux et al. [30], who executed on Defects4J with

Limitation of repair implementationsThe buggy program the same repair tools that we have also considered in this work.

LCSLENGTHthat has not one single bug, but twiacorrect ~ The results are moderately dirent in repairability rate, failure
array slice and missing boolean expressioand the ground rate and proportions of duplicated patches.

truth patch modi es two dierent locations correspondingly. ~ First, the repairability rate is the percentage of unique re-
Even if, in theory, that buggy program could be repaired by Arjapaired bugs over all bugs from a benchmark. The repair tools
or JGenProg, we observe in practice they could not nd a patcighow aslightly higher repairability rate in Defects4J, i.e., 47.34%
because it is a complex multi-location patch. Multi-location and(187395) [30], than in QuixBugs, i.e., 40% (#®). The higher

multi-bug repair are indeed an open research challenge [48]. repairability of Defects4J bugs could be explained, to some ex-
tent, in the fact that those bugs are larger (in LOC) than those

Impact of test cases on the capability of program repair toolsfrom QuixBugs. This implies that redundancy-based repair ap-
For the 16 repaired programs/16 of them have only failing proaches (e.g., Cardumen) have more xing ingredients avail-
tests and no passing tests. To our knowledge, all benchmarlable to synthesize a candidate patch, increasing the probability
of the literature contain at least one passing test case. Heref synthesizing a test suite adequate patch.

our empirical study shows that program repair with only fail-  Second, we observe that the repair failure rate — the per-
ing tests can be successful. There are four programs with neentage of repair attempts that nished due to an error — is
passing tests that are repaired by JGenProg, Arja and RSRepdir QuixBugs (4.31%) compared to 21.08% for Defects4J [30].
This clearly shows that generate-and-validate repair techniguddhe reason is that Defects4J compared to QuixBugs involves
do not require passing tests for synthesizing a patch. This igiore modules and dependencies during the program execution,
because the generate-and-validate repair tools, such as JGéme complexity of Defects4J is higher and hits the limitation of
Prog, Arja and RSRepair do not need to infer semantic conthe current automatic patch generation tools. This calls for fu-
straints from passing test cases. They generate the test suitée research to investigate the implementation of repair tools
adequate patch through searching the xing ingredients regardo mitigate the failure rate.

less of passing test cases. However, not all passing test absent Third, in both benchmarks, the 10 considered program re-
programs can be repaired by generate-and-validate approachgair tools generate a large number of syntactically identical, i.e.,
because of the three limitations we have presented above. @huplicated patches, but in dérent proportions. Speci cally,

the contrary, the synthesis-based repair approaches, e.g., Nopiblere exists 51% (19,0137,224) duplicated patches on De-
require passing tests to infer semantic constraints. The absentests4J and 77% (1,182,470) duplicated patches on QuixBugs.
of passing tests creates a degenerated synthesis problem thég suspect that the larger number of duplicates on QuixBugs is
hampers repair eectiveness. To this extent, because it containglue to the small size of QuixBugs programs: the amount of x-
bugs with no passing test cases, QuixBugs is more appropriateg ingredients is fewer, those are less diverse than Defects4J,
for generate-and-validate repair techniques than for synthesithus they are reused more frequently, and to produce more du-

based ones. plicated patches.

On the test failure symptoms of patches prograM& have Answer to RQ2: 180 QuixBugs programs are repairef
aggregated the failure symptoms of the 16 patched program| Wwith test suite adequate patches synthesized by ten repair
10 incorrect output 4 stack over owerrors, 1timeoufin nite tools. Those test suite adequate patches covdi71ifug

loop error, and Inull pointer exception This con rms the re- types. A key originality of this empirical study is that i
sults on Defects4J showing that program repair isative not proves that program repair tools work despite the absence
only for assertion errors. No repair approach could repair ¢ of passing tests ( ve programs without passing tests can be
bug exposed by aoncurrent modi cation exceptioor anar- repaired automatically). Those results were preliminarily
ray index error One possible explanation for this is that test| reported inthe work [24]. Here, we report on more patches
suite based repair tools typically determine suspicious bugg (338 patches versus 64 patches in [24]), with unique qual-
locations based on the root cause of the test failures. For tho{ itative insights.

bug types, the test failure symptoms make repair toolscdit
to identify the right buggy locations. For example, the buggy4.3. Results for RQ3: Manual Patch Correctness Assessment

programFIND_FIRSTIN_SORTED:S a typical incorrect com- Figure 2 shows the manual assessment results for 338 au-
parison operator bug, which requires the modi cation of a com+ 5tic program repair patches synthesized for 16 buggy pro-
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Figure 3: The number of buggy programs correctly and incorrectly
repaired per repair tool.

null pointer exception by adding null checks for variabbre
Figure 2: Manual assessment of 338 QuixBugs patches spread ove'F'owe\_le_r' we Obs.erve that four of those p_atches, beyond xing
16 QuixBugs bugs. the 0r|_g|_nal bug, mFroduce a new bug which is not expo_sed by
the original test suite -DETECT.CYCLE Thus, we consider
those four patches as over tting, and the other four, which do
grams of QuixBugs. The green and red legends indicate corredpt su er that problem, as correct.
patches and over tting patches, respectively. In total, 158 of Figure 3 presents the number of programs that are correctly
338 are classi ed as correct, and the remaining 180 patches afgpaired per program repair tool. This means the number of
classi ed as over tting by our manual assessment. Overall, peprograms for which there exists at least one correct patch ac-
this ground truth based manual assessment, there are 7 outasirding to the manual assessment we have done. The green
40 QuixBugs buggy programs are correctly repaired. and red legends indicate the number of buggy programs that
This means that the repair rate for QuixBugs is 17.524q7 are respectively correctly and incorrectly repaired per repair
bugs are correctly repaired), which is respectively 8.1 percentool. We have the following observationg) All 10 repair
age points and 9.1 percentage points higher than the state-d@o0ls are able to correctly repair at least one buggy program of
the-art evaluations on Defects4J {244 bugs are correctly re- QuixBugs;2) Cardumen correctly repaired 3 buggy programs,
paired) and IntroClassJava (297 bugs are correctly repaired) Which outperforms the other 9 repair too®j;Three repair tools
reported by CapGen [3]. We explain the higher repair rate foeontribute to more correctly than incorrectly repaired programs
the following two reasons. First, QuixBugs are small programs(Cardumen, RSRepair and JMutRepair), three tools perform the
this narrows down the search space of xing ingredients, and alsame number (Arja, Nopol and Dynamoth), and four tools pro-
lows for repair tools to precisely locate buggy lines and to nd duce more incorrectly than correctly repaired programs (NPE-
xing ingredients for patch generation. Second, our empiricalFix, JKali, Tibra and JGenProg}) Overall, 7 unigue programs
study considers more repair tools than previous ones (1€rdi are correctly repaired by all repair tools, they are complemen-
ent repair tools) which mechanically increases the number d@ry to each other.
repaired bugs ([32, 14, 50]). To the best of our knowledge, our study is the rst ever to
Now, we talk about the over tting rate over the generatedmanually assess 338 patches for QuixBugs. Having this large
test suite adequate patches. According to our manual asseggnount of manually labeled patches is valuable: it paves the
ment, 53.3% (18@338) of patches for QuixBugs are over t- Wway to use machine learning techniques to do patch correctness
ting. This further con rms that program repair tends to gen-prediction [51].
erate more over tting patches than correct patches [20, 18
Since our empirical study is on a new benchmark, this furthe
strengthens the external validity of this important nding.
Notably, we observe that for 15 of 16 buggy programs re-

Answer to RQ3: According to our manual assessme
740 QuixBugs bugs are correctly repaired, and-338
program repair patches are considered as correct.

nt,

The
18 t_

paired with test suite adequate patches, either all the generat
patches are classi ed as correct or all over tting. This suggest;
that all tools are identically impacted when the speci cation is
weak. Moreover, recall that derent repair tools have overlap-
ping repair strategies. For example, Arja and JGenprog are bo
based on genetic programming search techniques to rearran
the ingredients already existent in the buggy program. The ou
lier is the eight generated patches for BETECT.CYCLEpro-

other 186338 generated patches are assessed as ove
ting. Those results are original, because they are mg
on a benchmark that is little studied. Our ndings arn
aligned to those previously reported on other bug ben
marks: 1) The number of generated over tting patche
is larger than the number of generated correct patch
2) Test suites are too weak to specify program repair pat
even for small programs.

ade
ch-

es;
ches,

gram, all by NPEFix. NPEFix generates eight patches to x the
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Table 4: Number of patches classi ed as over tting for QuixBugs programs with at least one patch.

Programs # Generated Over tting patches detected

patches RGTeyosute RGTinputsampling G Tinvariants  Manual assessment
LIS 122 0 0 118 0
SHORTESTPATHLENGTHS 91 91 91 85 91
DEPTHFIRST.SEARCH 59 58 0 55 59
QUICKSORT 28 0 0 3 0
SQRT 18 18 18 18 18
DETECT.CYCLE 8 0 0 8 4
POWERSET 3 3 3 0 3
IS.VALID _PARENTHESIZATION 1 1 1 1 1
FIND_IN_SORTED 1 1 1 1 1
HANOI 1 1 1 0 1
GET_FACTORS 1 1 0 0 1
NEXT_PERMUTATION 1 0 0 0 1
RPNLEVAL 1 0 0 0 0
KNAPSACK 1 0 0 0 0
LEVENSHTEIN 1 0 0 0 0
MERGESORT 1 0 0 0 0
Sum 338 174 115 289 180

4.4. Results for RQ4: Automated Patch Correctness Assesether techniques, this is mostly because it classi es 118 patches
ments for programLIS as over tting while the other two techniques

In this section, we analyze the results of automated patcA© Not. On the contranRGTinputsamping Which classi es as
correctness assessments. We compare them against the res@H8r tting less patches than the other two techniques, does not
obtained from the manual assessment. This comparison allov§éassify as over tting any patch from prograEPTHFIRST-

us to calculate the accuracy of the considered automated asses3EARCH while the other two techniques do it for at least 55

ment techniques. Finally, we discuss their tfalse positive Patches.
and negative cases. Now, we compare the results from automated assessment

with those from manual assessment, which classi es as over-
tting 180 patches. That comparison allows us to detect the
4.4.1. RQ4a: Patches classied as over tting by automatedMisclassi cation of the automated assessments.
patch assessments The Venn diagram in Figure 4 shows the overlap between
Table 4 shows the over tting patch assessment results prot_he di erent assessments. First, we observe that the manual as-
duced by the three considered techniques over 338 generat8@Ssment and the three techniques agree on the majority (105)
patches. The rst column gives the names of buggy programe over tting patches (the intersection of all circles). This shows
patched by at least one repair tool. The second column showgat aI_I con_sidered automated assessment teghniques can cor-
the total number of generated patches over all tools. The thirffECtlY identify, at least, 58.3% (10B80) of over tting patches.
to fth columns give the number of patches classi ed as over t- S€c0nd, the assessment result fl@@TeyosuiteiS the closest to

ting by the three automated assessments. We present the manfjignual assessment with 174 of 180 cases. Ov&t@llevosuie
assessment results in the last column. For example, the rst roly abl€ to correctly classify the 17480 over tting patches. Third,
shows there are 122 patches generated folh8gRG Tevosuie 2 OVET tting patches classi ed bRG Tinputs ampiingcan be found
andRG Tinputs ampingidentify all of them as correct patches (i.e., by RGTevosuite The overlap between them is due to the simi-
0 over tting patch), which is fully aligned with manual assess- larity of the techniques, both based on the generation of test

ment results. However, tH@Tiarians classi es 118 of them as inputs. HoweverRG TgyosuiteiS able to correctly classify 59 ad-
over tting, which contradicts the manual assessment.

ditional patches. Fourtl& Tinvariants Classi es as over tting the

The automated patch assessment techniques classify patc/fd4gest number of patches (289). However, that is due to the
as over tting with di erent magnitude RGTeyosuieidenties ~ Misclassi cation of 125 correct patches.
174338 (51.5%) patches from 8 buggy programs as over tting, The three automated techniques ach|eye patch correctness
RGTinputs ampingdenti es 115338 (34%) patches from 6 buggy assessment results consensus on the majority of buggy pro-
programs as over tting, an Tinaransidenti es 289338 (85.5%) grams (916 p.rogre.lms). F_or three buggy programs, they agree
patches from 8 buggy programs as over tting. Theatiences N the over tting diagnostic for all patches, for which our man-

between those numbers can be explained by the kind of infor#@l assessment also classi ed them as over tting. Moreover,
the three techniques achieve consensus on the absence of over-

mation they collect, and are in uenced by outliers. For exam-""
ple, GTinvariants Classi es more over tting patches than the two ting patches for 5 buggy programs (the last 5 rows of Ta-
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Listing 1: An over tting patch by JMutRepair that is only found by
manual assessment.

for (int j=perm.size()-1; j!'=i; j--) {
if ((perm.get(j)) < (perm.get(i))) {
+ if ((perm.get(j)) >= (perm.get(i))) {
/Iground truth patch:
/lif (perm.get(j) > perm.get(i)) {

ation techniques such &G Teyosuite @NA RGTinputs ampiing the
false negative cases appear when the generated tests do not
contain inputs that expose the incorrect behavior of an over-
tting patch. RGTinputs amplingProduces the most false negative
cases (65). This shows the weakeeetiveness of the domain-
speci ¢ generators developer to sample test inputs. Finally, no
technique is able to identify all over tting patches and have zero
Figure 4: Venn diagram showing the overlap between the three  false negatives.
considered automated assessment techniques and manual assessment\\je discuss a case of an over tting patch that is not iden-
tied as such by any automated techniques. Listing 1 gives
Table 5: Accuracy of the three automated patch assessments. b patch oNEXT PERMUTATIONgenerated by JMutRepair.
The bug is present in an if condition which compares the posi-
Automated Assessment  #TP  #FP  #TN #FN  Accuracy tion of two elements in a lisperm The generated patch uses

RG Tevosite 174 0 158 6 98.29% the“>=" operator to x the bug. This patch is not identical to
RG Tinputs ampling 115 0 158 65 80.8% the ground truth version, which uses the operatei instead.
G Tinvariants 164 125 33 16 58.3% The manual assessment reveals that this patch is over tting:

if the list permcontains the same values, the behaviors of the
JMutRepair patch and the ground truth patchetiand the pro-
ble 4). However, according to our manual assessment, there gams produce dierent outputs. The aforementioned speci ¢
one patch for prografNEXT-PERMUTATIONwhich is actu-  input was neither generated B TeyosuiteNOr RG Tinputs ampling
ally over tting. Consequently, the JMutRepair patch is not classi ed as over-
tting. This case study illustrates that automated correctness
4.4.2. RQ4b: Accuracy of automated patch assessments assessment cannot fully replace manual assessment.
The manual assessment enables us to compute the accuracy True and false positives. Table 5 shows thaRGTgyosuite
of the three automated correctness assessments. has the largest number of true positive cases among the three
Accuracy. Table 5 gives the results of this analysis. Theassessment techniqueRG Tgyqsuite Classi es 59 and 10 more
rst column gives the name of the automated assessment teclover tting patches tharRGTinputs ampling@Nd G Tinvariants: Al
nique, and the second to fourth columns indicate the numbesver tting patches classi ed bRG Teyosuite®@NARG Tinputs ampling
of true positives, true negatives, false positives, and false negwe true positive cases (i.e., they do not suany false posi-
atives. The individual accuracy is given in the last column active case). Those two approaches are 100% precise. On the
cording to Equation 1. For instand®G Teyosuiteyields 174 true  contrary,GTinvariants SU €rs from a large number of false posi-
positives, 0 false positive, 158 true negatives, and 6 false negive cases (125). Thus, the precision of this technique is 56.7%
atives. This means there are 174 and 158 patches that are c¢164289). We identify two main reasons behind those false
rectly classi ed as over tting and correct, respectively. On the positives. First, the invariants may capture a speci c value of
contrary,RGTeyosuitefails to identify 6 over tting patches. the test case, instead of capturing the full range. For instance,
The RGTevosuite RGTinputsampling @Nd GTinvariants rf€Spec-  an invariant may captura.value== 0 instead ofa.value>=
tively achieve an accuracy rate of 98.2%, 80.8%, and 58.3%0 because only 0 is used in the test case. In this case, the in-
RGTevosuite@chieves the best accuracy among the three assessriant itself is over tting and results in a false positive. Sec-
ment techniques. This is inline with previous results havingond, invariants detection is sensitive to procedure exit and entry
shown that Evosuite performs better than pure random test gepoints, where the preconditions and postconditions are obtained
eration [39, 33, 52]. AlsoRGTeyesuitehas better accuracy than from. When a patched program adds new exit points (e.g., new
GTinvariantss this is becaus&RGTeyosuite produces fewer false return statements), all invariants that hold for the ground truth
positives tharG T variants (O versus 125). program are expected to hold at new exit points, otherwise, a
True and false negativesRG Teyosuite @NdRG Tinputsampiing ~~ Patch is assessed as a violation, and this is the major reason for
report the same number of true negatives cases (158), whighose false positives.
are correct patches not classi ed as over tting. Now, we see Listing 2 is an example of false positive f@Tnvariants
that all three techniques have false negatives, which are ovekisting 2a is the ground truth patch for the buggy program
tting patches classi ed as correct. In the case of test generQUICKSORT The invariants captured from the ground truth
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Listing 2: A case study of a false positive @fTvariants-

public static ArrayList<Integer> Program: QUICKSORT
quicksort(ArrayList<Integer> arr) { (java.util.ArrayList):::EXIT
if (arr.isEmpty()) { oS-SS CC-SCSCSCSCSCSCSCSCSCSCSCSCSSSSCSSSSCSSSSSCSSSSSSS=S=S=S======
return new ArrayList<Integer>(); /I always hold
arr[] == orig(arr[])
Integer pivot = arr.get(0); return != null
return[] elements != null
ArrayList<Integer> lesser = new ArraylList<Integer>(); return[].getClass().getName() elements ==
ArraylList<Integer> greater = new ArrayList<Integer>(); java.lang.Integer.class
/Ithe following invariants in gray hold for the ground
for (Integer x : arr.subList(1, arr.size())) { truth patch and listing2c patch, but not listing2d
if (x < pivot) { | (size(arr[])-1==-1)==>(arr[] == [J) |
lesser.add(x); .
- gelse if (x > pivot) f /lbuggy code | (size(arr[))-1==-1)==>(arr[].getClass().getName()==[]) |
+ gelse if (x >= pivot) f /lground truth patch ‘ (size(arr])-1==-1)==>(return[] == []) ‘
greater.add(x); .
} | (size(arr[))-1==-1)==>(return[].getClass().getName()==[]) |
L I
a: The ground-truth patch of QUICKSORT b: Invariants captured from the ground truth program execution
public static ArrayList<Integer> public static ArrayList<Integer>
quicksort(ArrayList<Integer> arr){ quicksort(ArrayList<Integer> arr){
if (arr.isEmpty()) { if (arr.isEmpty()) {
return new ArrayList<integer>(); return new ArrayList<Integer>();
+ if (arr.isEmpty()) f }
+ return new ArrayList<Integer>(); Integer pivot = arr.get(0);
+ g + if (arr.isEmpty()) f
+ return new ArrayList<Integer>();
Integer pivot = arr.get(0); +
ArraylList<Integer> lesser = new ArrayList<Integer>(); ArrayList<Integer> lesser = new ArrayList<Integer>();
ArrayList<Integer> greater = new ArrayList<Integer>(); Arraylist<Integer> greater = new ArraylList<Integer>();
for (Integer x : arr.subList(1, arr.size())) { for (Integer x : arr.subList(1, arr.size())) {
if (x < pivot) { if (x < pivot) {
lesser.add(x); lesser.add(x);
g else if (x > pivot) f - gelse if (x > pivot) f
+ gelse f + gelse f
greater.add(x); greater.add(x);
}
c: A semantically equivalent patch classi ed as correc@Wnvariants d: A semantically equivalent patch classi ed as over tting Y nvariants

program execution are given in Listing 2b. That ground truthgram when new exit points that are added. This is an important

patch modi es an operator, frof>" to“>=". caveat for assessing patches generated by genetic programming
Our empirical study found two patches for this QuixBugs(e.g., JGenProg and Arja), which tend to generate many new

subject: one presented in Listing 2c classi ed as correct bystatements with exit points. This suggests interesting future re-

GTnvariantss and @ second one presented in Listing 2d classi edsearch directions to improV@T nyariants

as over tting by the same assessment. Both patches modif Answerto RQ4: The accuracy BiG Tevosuite RGTInputSampIiLg

the conditions oklseblock, using €lsé to replace ®lse if (x andG Tinvariants are 98.2%, 80.8% and 58.3%, respectively,

> pivot)'. These changes are semantically equivalent to thos| showing thaRG TeyosuiteiS the best patch assessment tech-

proposed by the ground truth patch, so the patches are corred nique on QuixBugs. To our knowledge, this is the rst
We note that these two generated patches add redunda study ever that uses automated patch assessment on QuixBugs,

statements off (arr.isEmpty() which do not in uence the cor- | showing both its feasibility and ectiveness. We note
rectness of the patghes. However, those statements impactt - thatGTinvariants Proposed by [25], sters from many false
correctness evaluation done By invariants because they intro- | positives, calling for more research on this topic, little ex-

duce new exit pOintS (neW return StatementS). In LIStlng 2b, we p|0red by the program repair research Community_
can see that an invariant states a property for variaflat the

method exit point. The invariants in gray hold for the patch in
Listing 2c, because the exit poirgturn new ArrayListInteger(); 5. Threats to Validity

meets all captured invariants, all four properties captured for ) ) o
variablearr (e.g.,arr[] == []). However, in the patch at List- The major threat in our study lies in the manual correctness

ing 2d, a new program exit point is added one line after the rst2SSessment, which may result in misclassi cation due to a lack
exit point, and one invariant is not satis ed. When #re is not of expertise or mistakes. This threat holds for all program repair

empty, the program enters into the new exit point, and invarian'iesuns_ based on manual assessment. The b_est mitigation to this
arr] == [] is violated. threat is to make patches and analyses publicly available. Then

To sump, capturing behavioral dirences with invariants other researchers are able to further assess them, this is what we
violations is hard. In particular, invariants that hold at a certain@ve done in our open-science repository [23].

point in a program typically no longer hold in the patched pro- e note that manual assessment done over QuixBugs patches
is less error-prone than for Defects4J and more complex bench-
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marks becausel) QuixBugs contains well-known algorithms being repeatedly used in multiple locations of the buggy pro-
(e.g., QUICKSORYT), thus the patch analyst does not need tograms, which are not necessary for repairing the bugs. The
be an expert in the buggy program's application doma)As  redundant and complex codes lead to the ailty in patch
presented in Table 2, QuixBugs programs are short, thus it isnderstanding for researchers and developers. This has been
easier to read, debug and understand the generated patches.discussed by Yuan and Banzhaf [14], we advocate the future
The second threat is about construct validity. The automatiamprovement in the simplicity of repair code into the search
repair tools that we used in this empirical study could have bugprocess of genetic programming algorithms.
that prevent them to discover all possible patches. For this rea- Second, we observe that program repair tools tend to gener-
son, the results we have reported are likely an under-estimaticate high-granularity patches, which results in the abstract syn-
of the repairability of QuixBugs using automatic program re-tax tree (AST) edit operations often appearing in the root nodes
pair. of the buggy statements. These coarse-grained repair opera-
tions are not eective for repairing ner-grained bugs, such as
those that can be repaired by swapping two variables or re-
placing incorrect reference variables (eBUCKETSORTand
GCD). Thus, we consider lower-granularity patch generation

The bene ts of using QuixBugsStudying QuixBugs provides Wil bene tfuture program repair research. _

two major bene ts for the research community. First, it enables  Third, program repair tools could bene t from more diverse

the community to make new ndings about program repair thatXing ingredients, includingl) New operators: for example, in

have never been reported in other benchmarks, that we will dis2€ction 4.2 we explained the absence of operators for repair-

cuss next. Second, it strengthens the external validity of thé'd BITCOUNT, 2) Repair patterns: some considered repair

ndings previously found on other benchmarks. tools such as JGenProg and Cardumen only consider ingredi-
The study presented in this paper enables us to identify th@nts taken from the buggy program, which not enough to repair

following new ndings: 1) Generate-and-validate approaches@ Pug;3) New code synthesis mechanism: for example, a re-

are capable of generating patches for buggy programs with on@ir tool could use a new mechanism to create patches with

failing test cases, while synthesis-based approaches cannot. Tyjsibleandinvisiblemethod invocations, The visible and invisi-

other benchmarks do not contain buggy programs with onl)b|e method invocations are respectively referring to the method

failing tests, thus this nding has never been reported beforethat exists in the buggy programs and widely used utility pack-

2) 7 of 40 (17.5%) buggy programs of QuixBugs are correctlyddes (e.g., Commons Math project). In the considered 10 repair

repaired, which is 8.1% and 9.1% higher than for Defects4‘.§00|s, we do not observe any patches with an invisible method

and IntroClassJava benchmarks, respectively (see Section 4.g)vocation.

Our explanation is that, as the QuixBugs programs are smaller

than for other benchmarks, the corresponding search spaces a&eReg|ated Work

also smaller, thus, the repair tools are able to navigate a bigger

portion of the search space, increasing the probability of nd-7.1. Datasets of Bugs

ing the patch;3) The automated paich assessment technique  The benchmarks used in automatic program repair research
RGTevosuiehas the best eectiveness in our study, it is able to jncyde Introclass [9], ManyBugs [9], SIR [44], Code aws [53],
identify 98.2% over tting patches. Defects4J [10], IntroClassJava [43], Bugs.jar [47], Bears [45],
Our novel empirical study on QuixBugs con rms the fol- anqg pefexts [46].
lowing ndings found on other benchmarks, showing theirgen- gt et al. [20] evaluate over tting patches generated by
eralizability: 1) Our study on QuixBugs con rms the existence Genprog and TrpAutoRepair on IntroClass. Le et al. [21] sys-
of over tting patches by a large amount; 2) Our study on QuixBygatically characterize the nature of over tting in semantics-
con rms that both generate-and-validate approaches and synthgsigy automatic program repair on the IntroClass and Code-
based approaches work, but on efient bugs. aws benchmarks. Ke et al. [54] evaluate SearchRepair on
IntroClass. Qi et al. [18], Mechtaev et al. [55], Long and Ri-
. . . nard [56] evaluate repair approaches on ManyBugs. Stratis and
The potential future improvement of program repair tooh- Rajan [57] evaluate their approach on SIR. Nguyen et al. [5]

.thOli)gh tne reEalrfrgtef Oft EE'XB:;?St |sCr:|gh(3r thanmrée?X'Stbropose SemFix and evaluate it on SIR. Papadakis et al. [58]
Ing benchmarks ot DetectsaJ and introt-1ass.Jjava, s collect and analyze mutant quality indicators based on Code-

buggy programs are not able to be repaired with correct patchesawsl Chekam et al. [59] propose a new technique for mutant

For instance, some bugs that could be repaired with a Simplgg|e.otion and evaluate their work on Code aws. Martinez et
one-liner x (e.g., GCD) are not able to be automatically re-

. ; » al. [22] and Yu et al. [34] report on their experiments using
paired by any repair tool. Our empirical study suggests POty efectsad. Xiong et al. [32] propose the ACS repair tool and

tial future improvements of program repair tools. evaluate it on four projects of the Defects4J benchmark. Wen

. First, we observe the generate-and-validate approaches (e'e.gf’al. [3] propose CapGen, a context-aware patch generation
Arja and_ JGenProg) base_d on genet_|c programming, common chnique and evaluate this technique on the Defects4J. Hua et
generating complex repair code. This results in redundant co . [11] propose and evaluate SketchFix on Defects4J. Wen et

6. Discussion
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