Skip to Main content Skip to Navigation
Conference papers

All solid-state ionic actuators based on polymeric ionic liquids and electronic conducting polymers

Abstract : Ionic electro-active polymers (EAP) are promising materials for actuation and sensing. In order to operate in open-air, they are usually built in a trilayer configuration where the internal polymer membrane is soaked with an exogenous electrolyte and sandwiched between two electronic conducting polymer (ECP) layers. The use of exogenous electrolytes can be a limitation in several applications since it may lead to evaporation issues and leakage. Moreover, the soaking step, necessary to introduce the electrolyte in the device, can become tricky as soon as microdevices are considered. In this work we describe the synthesis and characterization of truly “all-solid-state” ionic actuators by using polymeric ionic liquids (PILs). PILs are a new class of polyelectrolytes presenting ionic liquid-like ions along their polymer backbone. First, ECP electrodes containing PIL are synthesized by vapor phase polymerization and their thickness and electronic conductivity are characterized. Then, electrodes and PIL-based membranes are assembled into a trilayer configuration as a proof of concept of solid-state ionic actuator. Under 1.75V, a strain difference about 1% is reached.
Complete list of metadata

https://hal-uphf.archives-ouvertes.fr/hal-03582759
Contributor : Kathleen TORCK Connect in order to contact the contributor
Submitted on : Monday, February 21, 2022 - 2:12:45 PM
Last modification on : Saturday, July 2, 2022 - 4:53:07 PM

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Links full text

Identifiers

Citation

Frédéric Braz Ribeiro, Giao T.M. Nguyen, Alexander Shaplov, Eric Cattan, Frederic Vidal, et al.. All solid-state ionic actuators based on polymeric ionic liquids and electronic conducting polymers. 5th International Conference on Ionic Liquid-based Materials, ILMAT 2019, Nov 2019, Paris, France. ⟨10.1117/12.2300774⟩. ⟨hal-03582759⟩

Share

Metrics

Record views

21