Skip to Main content Skip to Navigation
Journal articles

Dynamic Behavior of Printed-Circuits Plasma Actuator Based on DC Electrical Discharge: Application in Aerodynamics

Abstract : This paper deals with the electrohydrodynamic airflow control realized by the kinetic energy provided by an electrical discharge created at the surface of a dielectric material. We will present the results of the airflow control above an NACA0015 profile, this application is ensured by the action of the ionic wind generated by an applied dc corona discharge. The actuation consists in creating a nonthermal plasma sheet at the NACA0015 suction side. Plasma is created between two electrodes flush-mounted on the surface of the airfoil and excited with a dc power supply. To highlight the effect of plasma actuator on the free airflow, we will present streamlines fields with plasma actuator ON and OFF. We will show that the plasma sheet can modify the size of the mean recirculation region and that it changes the flow topology. In addition, the observed velocity profiles above the NACA0015 highlight the reduction of the boundary layer thickness under the effect of the corona electrical discharge.
Document type :
Journal articles
Complete list of metadata

https://hal-uphf.archives-ouvertes.fr/hal-03613074
Contributor : Julie Cagniard Connect in order to contact the contributor
Submitted on : Friday, March 18, 2022 - 11:09:50 AM
Last modification on : Friday, August 5, 2022 - 2:32:23 PM

Identifiers

Collections

Citation

Rafika Mestiri, Mohamed Mehdi Oueslati, Anouar Wajdi Dahmouni, Ramzi Hadaji, Sassi Ben Nasrallah, et al.. Dynamic Behavior of Printed-Circuits Plasma Actuator Based on DC Electrical Discharge: Application in Aerodynamics. IEEE Transactions on Plasma Science, Institute of Electrical and Electronics Engineers, 2014, 42 (7), pp.1854-1860. ⟨10.1109/TPS.2014.2328573⟩. ⟨hal-03613074⟩

Share

Metrics

Record views

4