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CHAPTER 1

Introduction

Bonding and precisely structural bonding is an assembling technique used by Man since
the rise of time. Structural has been used in various sectors during this time with for
example the used of natural adhesives for the weapon of prehistoric men. With the
emergence of transportation industries in the XX century, structural bonding has known
a growing interest from both industrial and research actors. Indeed with the current goals
of safe and lightweight vehicles of the politics and the transportation industry, structural
bonding is in fact at the rise of its use.

In the particular context of automotive industry, the use of structural bonding increases
each year as shown in Figure 1.1. Between each current and old or comparison models
presented in Figure 1.1 the lengths of bonded joints are always increased of more 100%.
In addition to these car models, structural bonding is also present with more than 100
meters in some luxuous models like Mercedes class S, BMW 7, Lotus ellipse and so on.

e

- Current model
89.7

- Old /comparison model

62.4

Length of bonded joints (in m)

0

Mercedes class C Audi ab Volvo XC60 Volvo V70 Opel Insiginia
B o EEe
" i

Figure 1.1: evolution of structural bonding use in some car models

The question we can ask now is:

" Why structural bonding is so interesting for automotive industry ? "

Of course the classical advantages of bonding are of interest like the possibility to join
dissimilar materials (like polymer on metals...) and the stress concentration reduction
in classical assemblies like spot-welding, riveting or climbing but new advantages have
appeared with the new generation adhesive.




2 Chapter 1. Introduction

Now structural bonding is used to improve the durability by overcoming fatigue problems
and improving long term durability. The acoustic of car structures is also improved by
increasing the stiffness of car body with for example (Table 1.1) between the old and
current model of Audi A6 in which an increase of &~ 240 % of the length of the bonded
joints is present.

Increase (in % )
Bending stiffness 34
Torsionnal stiffness 20

Table 1.1: increase of acoustic between the old and new Audi A6

The last domains in which structural bonding is used is the safety and the cost reduction of
car structures production. Indeed the safety is improved by enabling the use of Advanced
High Strength Steel (AHSS) and increasing the energy managment capabilities of car
body. The cost reduction is enabled by giving the possibility to reduce the number of
spotwelds of a car body for an equivalent safety level.

Therefore this thesis is focused on the following aspects:

e the safety with the increase of energy managment capabilities of car structures,
e the cost reduction with the reduction of number of spotwelds,

they have been validated on dynamic axial crushing tests of crashboxes (16 m.s™!)
although these arguments are widely used by adhesive producers.

These tests have been performed at ARCELORMITTAL Maiziéres-les-Metz, the
full description of the experimental set up will be given in Chapter 5. Three kinds
of crashbox configurations have been analysed (Figure 1.2) to study the effect of
structural bonding on the safety and cost reduction. The steel grades and thicknesses
are summarized in Figure 1.2.

Ay % Steel grade | Thickness (in mm)

ﬂ ’ Bonded + Bonded +

DP 600 1.5
10 spotwelds 10 spotwelds 5 spotwelds

DP 1000 2

TRIP 800 1.5

a) b) c)

Figure 1.2: crashbox configurations a) 10 spotwelds, b) 10 spotweld + bonding and ¢) 5
spotwelds + bonding and thicknesses for the corresponding steel grade.

Ezperiments and models until failure of bonded joints for crashworthiness



As shown in Figure 1.3, for all the steel grades an increase in the dissipated energy is
observed between the 10 spotwelds and the 10 spotwelds + bonding specimens (at least
7% for the DP1000 and a maxima of 14 % for the DP600). It could be notice too that the
same dissipated energy is observed between the 10 spotwelds and 5 spotwelds + bonding
specimens for all the steel grades. These observations confirm the commercial arguments
of the adhesive producers and justify the interest of this thesis.

3e+044
R DP 600
2.5e+04 4
N TRIP 800
BN DP 1000

2e+04

I 10 spotwelds

I 10 spotwelds + bonding

Dissipated energy (in J)
-
w
"
+
o
&

BEE 5 spotwelds + bonding

5 000

Crashbox configuration

Figure 1.3: evolution of dissipated energy in function of the crashbox configuration.

For all these applications of structural bonding in automotive structures (Figure 1.4)
different adhesive are produced by chemical industries:

e anaerobics,

e cpoxies,

e reactive acrylics,

e polyurethanes,

e special formulation of cyanoacrylates.

Even if structural bonding has appeared in automotive design a few years ago, its use
is only limited to luxuous models (more than 100 m in a Mercedes class S in face of
less than 10 m in a Renault Laguna). This limit is mainly due to the the misknowledge
of the behaviour of the adhesive in details. Then the bonded joints are not taken into
account in the finite element simulations of the automotive structures. The result of this
limitation is that the bonded joints are used for the moment only to increase the classical
security factor used in mechanical design. Even if the cost of bonding is lower than the
cost of the spotwelding technique, its use is limited to luxuous cars. So the next step to
obtain an optimal use of structural bonding and its implementation in all kinds of cars
is to realize finite element simulations and optimization.

by David MORIN



4 Chapter 1. Introduction

Figure 1.4: possible places of structural bonding in transportation structures (yellow
lines).

So as to present the current scientific lockings due to the finite element modeling
of bonded structures we have to take place in the particular context of this thesis, the
crashworthiness properties of structural adhesives.

The first limit in the modeling of crashworthiness of bonded joints is due to the special
purpose adhesive developped for this kinds of applications. A new generation adhesive
has been developped by chemical industries and is defined as a crash-stable adhesive.
This adhesive is based on an epoxy matrix (Figure 1.5) which toughened by addition of
polymer nodules (Figure 1.6 a). In this epoxy matrix some minerals compounds are also
added (Figure 1.6 b) so as to optimize the reticulation process of this kind of adhesive.

H. CHs
C
0 _0
ol | X C/ CH:
CH; H:

Figure 1.5: formulation of DGEBA epoxyde used in crash-stable adhesives.

Figure 1.6: a) polymer nodules and b) mineral compounds.

The addition of polymer nodules confers to the classical epoxy matrix which has a brittle
behaviour, mechanical properties which are near those of polymer materials:

e visco-elasticity,

Experiments and models until failure of bonded joints for crashworthiness



e vyield difference in tension and compression,
e damage evolution during plasticity.
e visco-plasticity.

These properties are very difficult to identify on classical tests which are widely used
in the literature [1] [2] [3] [4] [5]. These tests suffer of a high stress heterogeneity
inside the bonded joint but it also difficult to determine the failure initiation and the
combination of stresses and strains which are leading to. All these aspects of experimental
characterization will be developped in Chapter 2. From a numerical point of view these
mechanical properties suffer of a lack of models in the literature. The most advance has
been realized in the works of Dean et al [6] in which a damaged approach is used. More
details on these theoretical works will be given in Chapter 3.

The other limit to the modeling of bonded joints is due to the calculation time of
finite element simulations. Indeed the finite element softwares used for crashworthiness
computations are based on explicit integration scheme. In this scheme. the time step
used for the computation is based on the time needed by an elastic wave to cross the
smallest element. This time can be computed with the Friedrichs and Levy criterion:

st "

where [ is the shortest length of the considered element, p its volumic mass and E its
elasticity modulus. An illustration of the time step computation for a defined mesh is
illustrated in Figure 1.7 and in Table 1.2. The time step of the adhesive volumic elements
is always lower than the time step of steel shells, the only possibility to obtain the same
time step in both elements is to use a mesh of 1 mm for the steel and only one element
through the thickness of the bonded joints (typically 0.3 mm). This solution is unusable
due to two reasons, firstly a shell mesh of 1 mm for crashworthiness is non-realistic with
current computers and a description of the bonded joint with only one element though
the thickness will not give accurate results.

Liteel

Figure 1.7: illustration of element sizes.

by David MORIN



6 Chapter 1. Introduction

Poteet = T800K g/m3 ! Steel (in mm) 5 3 1

Ege = 21le'Pa time step Lps | 0.6 us | 0.2 us
Padhesive = 1180Kg/m3 ! Adhesive (in mm) 0.3 0.1 0.03
Eoghesive = 2¢° Pa time step 0.2 ps | 0.07 ps | 0.02 s

Table 1.2: illustration of time step problem between steel shell and adhesive volume.

Some techniques are already used in industry and litterature to solve the problem of the
computation time. From an industrial point of view, mass scaling technique can be used
to artificially increase the volumic mass and the resulting time step but this approach
underestimate stress and could lead to false prediction of damage and failure of the
bonded joints. The other point of view would lead to use interface elements to skip the
problem of the time step, this approach is widely used in literature for various problems
and will be extended in Chapter 4.

Unfortunately a fine description of the behaviour and failure of the bonded joints
and a small computation time can not be solved with the same model. So in this thesis,
instead of a unique model, a modeling strategy of bonded joints is then developped.
This strategy is based on two models as summarized in Table 1.3. The first one which
is called mesoscopic model is based on fine behaviour and failure models which are
able to represent all the specificities of the adhesive mechanical behaviour. This model
is used with many elements in the thickness of the bonded joints but need a small
time step and the resulting huge computation time. The second approach is called
macroscopic model and is based on an interface element which has no effect on the
time step computation. Unless this model is not time consuming its representation of
the behaviour and failure of the adhesive is simplified.

Model Mesoscopic Macroscopic
Advantages | fine description of properties no effect on the time step
Disadvantages small time step simplified description of properties

Table 1.3: summarize of the different models.

Then the proposed modeling strategy is illustrated in Figure 1.8. In the particular con-
text of crashbox design, the different available shapes can be firstly analysed with the
macroscopic approach so as to selected the best one and secondly a fine analysis is needed
with the mesoscopic approach before finally validate the selected shape with experiments.

Then these thesis works are divided into five main parts. The first one (called here
Chapter 2) deals with the experimental campaign on bulk adhesive specimens which have
been chosen for the homogenous stress fields and easy analysis. The second part (called
here Chapter 3) deals with the implementation of the mesoscopic approach into ABAQUS
explicit through a user-material subroutine. The third part (called here Chapter 4) is
devoted to the development of the macroscopic approach and its implementation in to
ABAQUS explicit through a user-element subroutine. Finally the fourth part (called here

Experiments and models until foilure of bonded joints for crashworthiness



Experiments Mesoscopic model Macroscopic model

Figure 1.8: representation of the proposed modeling strategy.

Chapter 5) of this thesis is devoted to the validation of the two approaches on different
complex load tests.

by David MORIN
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10 Chapter 2. Experimentation and characterization of bulk adhesive

2.1 Literature study and proposed approach

Experimental characterization of behaviour and failure of bonded joints are tackled with
different points of view in the literature :

e testing on assemblies,
e testing on bulk materials.

The mainly used technique is realized by achieving test directly on assemblies. Different
kinds of loadings can be applied on bonded joints with this experimental method. Ten-
sile/compressive, shear and mixed loadings are obtained with butt, single or double lap
and scarf joints respectively (Figure 2.1) [1] |2] [3] |4] [5] - The benefit of these tests is
to allow the characterization of bonded joints in conditions near those used in industry.
In the particular context of automotive industry, the same metal sheets used for an au-
tomotive structure can be used and the chemical composition of adherent surface are the
same. Unfortunately these tests suffer of two main problems |7] [8]:

e high stress heterogeneities in the bonded joint,

e global response is highly influenced by the adherent properties,

1

Figure 2.1: Classical bonded joints geometries.

Some special tests devoted to failure characterization of bonded joints are also present in
the literature (9] [10] [11] [12]. In these tests, peeling and cleavage loadings are applied
on bonded joints so as to identify the adhesion of an adhesive. Although these tests
provide a good estimation of failure resistance of an adhesive, the obtained data are not
suitable for finite element modeling. Another impact strength tests are also proposed
by Goglio et al [13], these tests are based on Charpy’s pendulum and provide different
stress combinations. All these impact tests suffer of the same problems than the classical
assemblies tests (2.1).

These problems and geometical configuration of assembly specimen lead to high difficulty
to identify strain and stress inside the bonded joints. To avoid these problems, some
analytical models are used like shear lag model [14] but their deployments are always
hard and plasticity of adherents is rarely take into account.

Some solutions are proposed in literature to solve the above problems like in the works of

Experiments and models until failure of bonded joints for crashworthiness



2.1. Literature study and proposed approach 11

Cognard et al [15] [16] in which a new specimen geometry derived from the Arcan test [17]
is designed. This new geometry allows to obtain a more homogenous stress distribution
inside the bonded joint. The difficulty of this test is that so as to obtain a good stress
field a complex beak is needed near the bonded joint. This beak is only achievable on
massive steel specimen and chemical surface composition and industrial conditions are
not respected anymore. This new test is also difficult to realize at high strain rates due
to important mass of the clamping system.

The other point of view used in the literature to characterize the behaviour and failure
of adhesive is to achieve tests on bulk adhesive specimens [18]. This kinds of tests which
are used by the chemical industries to identify classical elastic properties, are not very
used in the literature in face of the assemblies tests. These bulk tests allow to obtain a
very homogeneous stress state inside the specimens and to use classical stress and strain
calculations formula. These tests are only limited by two problems:

e industrial conditions are not respected due to huge thickness needed and the absence
of adherent,

e it is difficult to obtain pore free sample due to original packaging of industrial
adhesive.

In this work, the bulk adhesive specimen testing is chosen so as to characterize the be-
haviour and failure of a toughened epoxy adhesive. In order to obtain a fine behaviour
and failure model various kinds of loadings and a wide strain rate range are needed. This
is achieved by realizing tensile, compressive and shear tests using different loading devices.
New measurement techniques like 2D and 3D Digital Image Correlation (DIC) [19] [20]
are used to identify mechanical properties of the adhesive.

These experimental results lead to the idenfication of mathematicals models which will de-
scribe the material behaviour and failure properties. In the literature some visco-elasticity
models are already defined on various materials but not on toughened epoxy adhesive [21]
[22]. These models are classicaly identified by complex tests like relaxation and/or creep
tests. An alternative method to identify these kinds of models would lead to realize Dy-
namic Modal Analysis (D.M.A) tests [23] [24]. Although these tests are easy to realize the
identification of models’parameters are very complicated due to the complex formulation
of the results. In the works of Richeton et al [25], a similar study is realized on a polymer
materials and the visco-elasticity is taken into account by a viscous elastic modulus which
is formulated by a logarithmic function (equation 2.1).

E(¢) = a+bin (i> (2.1)

€0
where a and b are the visco-elasticity parameters and £y a parameter needed to obtain an
adimensional logarithm.
Literature suffers of a lack of visco-plastic models for toughened epoxy adhesives. This
part of behaviour is generally done by tabulated behaviour law in finite element codes
[26]. For polymer materials the G’Sell model [27] [28] describes the evolution of stress in

function of strain and strain rate by means of exponential products as shown in equation
2.2 and 2.3.

2

o=K. (1 - e“ﬁ) e gm (2.2)

by David MORIN



12 Chapter 2. Experimentation and characterization of bulk adhesive

c=K. (1—-e™). (1+ a.e"b’s) el gm (2.3)

where K is the rigidity parameter, w the visco-elasticity parameter, (h, a,b,n) the struc-
tural hardening parameters and m the strain rate sensitivity parameter.
This model is modified in the literature so as to match their specific contexts [29]

o=K. (1—e™%).(1+ hi.c+hp.e?) &™ (2.4)

where K is the rigidity parameter, w the visco-elasticity parameter, (h1, he) the structural
hardening parameters and m the strain rate sensitivity.

Following this principle, the most advance is realized by EPEE [30]. He proposes to
exclude the visco-elasticity phase from the behaviour law by using an additive formulation

c=o0,+ K. (1 —e ). (hl.ap + hg.s';‘) E™ (2.5)

where o, is the yied stress, K the rigidity parameter, w the hook parameter, h;, ho,n the
structural hardening parameters and m the strain rate sensitivity parameter.

In the literature, volume variation is generally tackled with a plastic Poisson’s ratio which
is not equal to 0.5 or by a damage model. Damage evolution is generally tackled for
the toughened epoxy adhesive with a Gurson damage model [6]. This model describes
the evolution of voids. Although this model gives good results for metallic and some
polymer-like materials, its parameters are not identified directly on experimental results
but often by finite element inverse method [31]. Moreover some parameters (qi, g2, ¢3)
are generally extracted from the literature (g = 1.5, g2 = 1, g3 = 2.25) and can not fit
perfectly damage evolution in both metallic and polymer like materials.

Failure of adhesive in assemblies are often predicted by a critical stress criterion (equation
2.7). Even if this kind of criterion is simple, its identification is not so easy due to the
problem linked to the classical assemblies geometries (paragraph 2.1). In finite element
software the main failure criterion are based on a critical strain which is also difficult
to identify on assemblies tests but are very simple to quantify on bulk specimen testing
with new measurement techniques like D.I.C. A failure criterion based on a fixed failure
strain is inaccurate if the dependency to the triaxiality stress ratio and the strain rate is
not taken into account. For instance the failure criterion proposed by Johnson et al [32]
allows the failure strain to evolve with the strain rate but also with the triaxiality stress
ratio:

;= (D) + Dy.e~ D7) (1 + D4.ln(§(;)) (2.6)
where D, Dy, D3 are parameters which depend on the triaxility stress ratio n and Dy is
the sensitivity parameter of the equivalent strain rate €. The parameter €, is only used
to obtain a non-dimensional parameter in the logarithm. Altough this criterion gives a
good description of dependency on the strain rate, the dependency on the triaxiality stress
ratio is only monotonic and does not represent the dependency identified on experimental
tests.

Another model (2.7) comes from Wierzbicki et al works [33]. This criterion gives a fine
description of the dependance on the triaxiality stress ratio of the failure strain but does
not include strain rate effects.

£ = Cr.e=C2 = (C1.e”%" — Cy.e™C17) (1 — £3)" (2.7)

Ezperiments and models until failure of bonded joints for crashworthiness
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where 7) represent the triaxiality stress ratio and £ the third invariant of the stress tensor,
'y, Oy, (3, Cy are the triaxility stress ratio parameters of the considered material.

Here in these works, the visco-elasticity phase is described by a logarithmic model [25] due
to its simplicity and the available experimental data. The visco-plasticity is tackled by a
new modified G’Sell law following the works of EPEE [30]. Due to the different shapes
between the tensile, shear and compressive behaviour laws different mathematical models
are then proposed. Due to the complexity of the identification protocol of classical damage
model like Gurson one, in this thesis a new model used. This model is identified with
the plastic Poisson’s ratio evolution captured by D.I.C. techniques. The failure criterion
is identified using the workguidelines provided by Wierzbicki et al [33] and Johnson et
al [32]. These models are identified to be used in the mesoscopic finite element model

(Chapter 3).

2.2 Experimental campaigns description

2.2.1 Bulk adhesive specimen preparation

In order to perform tests on bulk specimens. an original forming process is developed
to obtain plates of pure adhesive on the bulk form. An aluminum mould is designed to
perform adhesive plates (Figure 2.2a). This mould is initially covered with a teflon film
so as to limit adhesion problems. The adhesive is previously stored in a cartridge, and
then placed in the mould with an electrical gas gun. Mechanical properties of adhesive
are dependent on the temperature, time of curing and pressure level applied during curing
phases [34], [35], [36]. In order to reduce these dependancy, the process parameters are
controlled using a heating press (Figure 2.2b).

a)

Figure 2.2: description of a) aluminum mould and b) heating press.
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14 Chapter 2. Experimentation and characterization of bulk adhesive

With the proposed forming process, pore-free sample remains difficult to obtain |34]. This
difficulty has to be seriously threated due to high strain localization on pore specimen as
illustrated in Figure 2.3. The measured strains are also higly influenced by pore as shown
is Figure 2.4. In consequence, a control of the porosity is carried out with lightening on

Ay

0,03
3 Eyy I
0,17

a) b)

0.09

B Eyy

0,19

Figure 2.3: difference on strain fields between a) a pore and b) a pore-free specimen.
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Position along y-axis (in mm)

Figure 2.4: distribution of true longitudinal strain at failure on a pore and pore-free
specimen.

each plate (Figure 2.5a). The next step consists in the localization of porisity which could
not be detected due to their very small size. For that, the micro-tomography technique
is used on small samples extracted from the plates (2*¥3*3mm). The size of the pore are
estimated close to 80 pum. These porosities will be taken into account as initial void in
further behaviour model developments (Figure 2.5b).

Experiments and models until failure of bonded joints for crashworthiness
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3mm

Y

Figure 2.5: a) localization of pores by lighting technique on a plate and b) uCT scan of
adhesive plate.

a) b)

After this control process, specimens are machined by water-cutting in the adhesive plates.
This technique is used so as to reduce the heating of specimens where dramatical issues
could be observed by classical machining operations; moreover the risk of crack initiation
is reduced.

2.2.2 Presentation of loading devices

In order to cover a wide range of strain rates, different loading devices are needed:
e a classical electro-mechanical machine for the low strain rates range [0.01;0.1] s7!,

e a high speed hydraulic machine for the intermediate strain rates range [0.1;100] s™!

(Figure 2.6 a) b)),
e Hopkinson bars for the high strain rates range over 100 s~! (Figure 2.7 a) b)).

The classical tensile tests are performed on the [0.01 ; 400| s™! range using the three
loading devices described above while the notched tensile tests are only achieved on the
electro-mechanical and highspeed hydraulic machines but lead to the same strain rate
range as the classical tensile tests due to the presence of the notch. Compressive tests are
achieved on the |0.53 ; 5000] s~! range using the high speed hydraulic machine and a set
of visco-elastic Hopkinson bars made of PA66. The shear tests performed with losipescu
device are only limited to low strain rate (0.02 s71) due to the complexity of the clamping
system (Figure 2.8).
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a) b)

Figure 2.6: high speed hydraulic a) tensile and b) compressive configurations.

Figure 2.8: losipescu shear test device.

Experiments and models until failure of bonded joints for crashworthiness
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2.2.3 Presentation of specimen geometries

For the classical tensile tests, a normative geometry is used (NF-EN-ISO-527-3) for the
low strain rate range (Figure 2.9). This geometry is slighty modify so as to be adapted to
the high speed hydraulic machine jack (Figure 2.10). For the pre-stressed Hopkinson bars
an innovative geometry is used (Figure 2.11 a) and finite element simulations are made
in order to quantify the geometry effect on the strain fields (Figure 2.11 b).

15 mm 15 mm
e R 47 mm !
10 mm 5 mm
30 mm
90 mm

Figure 2.9: normalized geometry of specimen for low strain rate range (thickness 4mm).

50 mm 50 mm

j R 47 mm
| i -

10 mm ]5 mm

30 mm
160 mm

Figure 2.10: modified samples based on normalized geometry used for highspeed hydraulic
machine (thickness 4mm).

- 41 mm

i 15 mm i
011
R6m i
il 007
005
5mm 10 mm 20mm i
\{ : 10 mm 8:?)%

R1mm
62 mm .
a) b)

Figure 2.11: a) specimen geometry for the Hopkinson tensile testing (thickness 4mm) and
b) F.E. results in terms of equivalent plastic strain.

The notched tensile specimens geometry which will be used for the failure criterion is based
on the classical tensile geometries with simply a half hole on each side of the specimen
(Figure 2.12). As for the classical tensile tests, the notched specimen geometry is modified
for high speed hydraulic machine jack (Figure 2.13).
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15 mm 15 mm
- "_’, ‘:}7 mm R1mm rﬁ
e /
10 mm ammi [5mm
30 mm
90 mm

Figure 2.12: notched specimen used for low strain rate range (thickness 4mm).

50 mm 50 mm
._____,l R47 mm R1mm
10 mm 4 mm 5 mm
30 mm
160 mm

Figure 2.13: notched specimen used for highspeed hydraulic machine (thickness 4mm).

The compressive test geometries are extracted from the NF-ISO-604 norm (Figure 2.14a).
A simple formula is given to determine the ratio between height and radius of the specimen
according to a critical plastic strain:

Eoris < 0,4 - (%)2 (2.8)
where €. is the critical plastic strain, z is the radius of the cylinder specimen and
h is the height of the cylinder. A critical plastic strain close to 0.5 is considered here
for calculations. Two different geometries are used as shown in Figure 2.14, these two
specimen geometries are cured under two pressures (1 MPa and 4 MPa) so as to study
the influence of curing pressure on the mechanical properties of the chosen toughened
epoxy adhesive.

6 mm 4 mm

Figure 2.14: normalized geometry of the compressive specimen.

The shear loading is obtained by the flexure of a V-notched beam, this test which is
originally designed for composite materials is called the Iosipescu test. The losipescu
shear geometry is extracted from the ASTM norm D5379 (Figure 2.15).
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11 mmI 20 mm

38 mm 3
= o

76 mm

Figure 2.15: normalized geometry of the losipescu shear specimen.

2.2.4 Presentation of measurement techniques

To identify the behaviour and failure of the toughened epoxy adhesive, two variables are
needed the force and the displacement obtained during tests. The force measurements
are adapted to the loading device:

e a classical strain gaged cell force for the electromechanical machine,

e a piezo-electric cell force previously calibrated on the force range for the high speed
hydraulic machine,

e a strain gage bridge for the Hopkinson bars.

The strain fields are achieved by both contact and non-contact methods. Contact method
is realized by classical strain gages, typical low elongation strain for the tensile elasticity
measurement while shear elasticity and plasticity measurements are realized with high
elongation strain gaged. All strain gages used for tensile measurements are bonded using
typical cyanoacrylate adhesive while strain gages used for shear measurements (Figure
2.16) are bonded with a special cyanoacrylate adhesive especially designed for high elon-
gation. Adhesive of strain gage is reticulated at room temperature for 24 hours under
pressure applied with a special purpose spring clamp.

Figure 2.16: strain gages on losipescu specimen.

Two non-contact measurement techniques are used to obtain the displacements fields. For
the compressive tests an electro-optical extensometer Zimmer with a bandwidth 250 kHz
is used (Figure 2.17a). This device follows two black/white transition markers exposed
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Figure 2.17: configuration of a) electro-optical extensometer and b) 3D DIC.

to a homogenous lighting. It determines in real time the current displacement and gives
the possibility of calculating true total strain from quasi-static to dynamic loadings.

The other non-contact methods used is the Digital Image Correlation (D.I.C.) technique
under its 2D and 3D forms (Figure 2.17b). In order to estimate the out-of-plane dis-
placements, 3D DIC is used on a static classical tensile test (0.02 s™!). This test proves
that out-of-plane displacements are smaller than the spatial resolution of DIC. 2D DIC is
used for the rest of the classical and notched tensile tests. 3D DIC is used to analyse the
quality of the compressive and shear tests but also to identify the true equivalent failure
strain of shear tests. For all the DIC calculations, a strain length of 300 pm is used. For
the acquisition of the pictures needed for the D.I.C. calculations two kinds of cameras are

used:
e a CCD captor with a 10 f.s™! acquisition rate for the low strain rate tests

e a CMOS captor with a 50, 1000, 15000, 37500 f.s~! acquisition rate for the middle
and high strain rate tests

2.2.5 Description of behaviour law computations

In order to establish a visco-plastic beahviour, three variables are needed, the true equiva-
lent strain, the true equivalent strain rate and the true stress. Three kinds of computations
are used for the tensile, compressive and shear tests. Due to the limitation of strain rate,
the shear plastic behaviour is not establish under visco-plastic behaviour.

For the tensile test, the true equivalent strain is obtained from:

€= (2.9)
where Z is the strain tensor filled by DIC calculations.
True strain rate is obtained by backward finite difference following:
. Eft)—E{— At
- B — & ) (2.10)

At
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where At is the time step of the CCD or CMOS captor.

This kind of derivate calculation leads to noisy results so a numerical smooth is applied
as illustrated in Figure 2.18. This numerical smooth is based on a local regression using
weighted linear least squares and a 2" degree polynomial model, the method assigns lower
weight to outliers in the regression and zero weight to data outside six mean absolute
deviations

— Noisy results
— Smoothed results

[+]
(=]
(T

True equivalent strain rate (in s'!)
B
o

0 0,0005 0,001 0.0015 0,002 0,0025
Time (in s)

Figure 2.18: difference between noisy and smoothed data.

For the tensile tests, the true stress is computed using:

—.e72 oW (2.11)

where F' is the current force in the specimen, Sy the initial cross-section of the specimen
and £99. £33 the strain of the cross section. To define the tensile visco-plastic behaviour
law the SEFE method is used [37]. This technique, previously developped in the LAMIH
laboratory, uses the heterogeneity of the strain field during a tensile test to establish a
visco-plastic behaviour law (Figure 2.19a & b).

The behaviour law at constant strain rate is then extracted by a numerical cut of the
3D behaviour surface established in the true strain. true strain rate and true stress space
by SEE method (Figure 2.20a & b).
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True stress

Figure 2.19: description of a) heterogeneous strain fields and b) behaviour surface.

constant §

True stress

&
b)

Figure 2.20: description of a) Numerical cut of surface and b) true behaviour law at
constant strain rate.

For the compressive behaviour law, the same formula as tensile behaviour law is used
(eq 2.11). Indeed only the longitudinal strain . is obtained from the electro-optical
extensometer. Then appropriated hypothesis has to be made to determine the cross-
sections strains £9o and £33.

:‘,.:111(1+i) (2.12)

ll()

where A is the current elongation given by the electro-optical extensometer and hg the
initial height of the specimen. As for the establishment of a visco-plastic behaviour the
strain rate is needed, for the compressive test the true strain rate for compressive tests is
compute following equation 2.10.
The shear behaviour law is obtained following;:

O shear = b_v (213)

in which F' is the total strength of the specimen and Sy the initial cross section.
The shear strain needed for the behaviour law is determined by:

~/ —

12 =

8 (2.14)

E_450
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where £_450 and £, 450 are the strains measured by the gages oriented at +45°.

2.2.6 Description of failure strain computation
The failure strain computation is only limited by two questions:

e when it is computed ?

e where it is computed ?

For compressive tests, the failure detection is realized directly on the stress/strain re-
sponse of the test. As illustrates in Figure 2.21, the failure initiation is located at the
first stress/strain curve inflexion. The uncertainty, linked to this kind of identification
technique, is totally neglicted in front of the natural dispersion of failure phenomenon.
For the computation location the true strain in compressive tests comes from a global
elongation measurement, then the strain field is assumed to be homogeneous and there is
no influence of the location.

100 4

[ — test strain rate 53 s“J

80

60

40

True stress (in MPa)

20+

0 0,2 0.4 0.6 0,8 1 1,2
True longitudinal strain

Figure 2.21: failure detection technique for compressive tests.

For the classical, notched tensile and the shear tests, the digital image correlation tech-
nique is used. With this kind of measurement method the identified failure strain depends
on the last picture used for the displacements measurement. As illustrates in Figure 2.22,
the last picture used is the previous of the first one on which a crack is clearly visible.
This kinds of considerations lead to an uncertainty on the failure strain which is evaluated
by : _

Az, = BLE 109 (2.15)

—.
<f

where AZ; is the failure strain uncertainty, At is the CCD or CMOS captor frame acqui-

sition rate, £y and Z;y are the mean failure strain and strain rate respectively observed at
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the considered frame acquisition rate.

Figure 2.23 illustrates the results in term of uncertainty on the failure strain on the various
frame acquisition rate used. The maximum uncertainty observed is equal to 8.2 percent,
this uncertainty has to be correlate to the natural dispersion of failure phenomenon. The
failure detection technique has a small influence on the dispersion of the failure strain

ralue.
9% Visible crack ntaton[
—>

t t+At

-4t

’ Y

Visible crack initiation

Figure 2.22: failure detection technique used for tensile, notched tensile and shear tests.
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Figure 2.23: computed uncertainty for the various frame acquisition rate.
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For the second question "Where is it computed ?", in the classical tensile test the true
strain is computed in the center of the specimen in the zone where a crack appears. The
center is chosen so as to avoid boundary effects on the DIC calculations. For the notched
tensile test, the strain field is heterogenous by definition in the specimen (Figure 2.24a).
This heterogeneity is neglicted when the DIC strain length calculations is chosen close to
300pm (Figure 2.24b).

0,004

Evy

0,18

0,02

Figure 2.24: a) true longitudinal strain field with a 8um strain length calculation and b)
true longitudinal strain field with a 300m strain length calculation.

In the shear tests the true equivalent failure strain is computed in the center of the
specimen to avoid edge effects. As for the notched tensile tests, the shear tests are also
submitted to heterogenous strain fields but with a DIC strain length calculations close to
300um, this heterogeneity is neglicted as (Figure 2.25).
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Exy

Figure 2.25: shear strain contour plot for a losipescu shear specimen.

2.3 Experimental results

2.3.1 Elasticity

The tensile elastic modulus is computed with the rules providing by the NF-EN-ISO-
527-3 norm. This norm indicates that the elastic modulus has to be computed between
two points (50 and 200 pz). In order to study the visco-elasticity of the adhesive, these
calculations are carried out at two different strain rates on 3 specimens at each speed.
Although the range of strain rate is small (5.3¥*107% to 53 s7!), the evolution of the
tensile elastic modulus in function of the strain rate shows a significant visco-elasticity
phenomenon (Figure 2.26).

2 600

2 400

£ 2 200

> >

1 000 ] T T T T T T T T T LI T v — T T
0,001 0,01 0.1 1 10 100
Strain rate (in s)

Figure 2.26: evolution of the tensile elastic modulus in function of the strain rate.

These tensile tests show also an influence of the strain gage location on the strain
field. This phenomenon is highlighted in Figure 2.27 with the repartition of longitudinal
strain along the height of the specimen. The strain gage specimen shows a low failure
strain (0.17) compared to the non-strain gage one (0.32). This influence is only restricted
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to the plasticity (Figure 2.28) and not affect the elastic modulus measurement.
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Figure 2.27: repartition of longitudinal strain along the height of the strain gage specimen

and the free one.
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Figure 2.28: influence of strain gage on the true longitudinal strain in center of specimens.

Elastic compressive moduli are identified on the first straight slope of the true strain -
true stress curves for different strain rates. Visco-elasticity in compressive is a highly
non-linear phenomenon and it also shows a dependency on the pressure applied during
curing (Figure 2.29). This last dependency seems to be function on the strain rate too
but more tests with different pressures applied are needed to conclude on it.
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Figure 2.29: evolution of compressive elasticity modulus in function of strain rate and
curing pressure.

The elastic shear modulus is computed following the ASTM D5379 norm (Figure 2.30).
By linking this result with the isotropic definition of shear modulus G (2.16) and a Pois-
son’s ratio of 0.42, the same magnitude of tensile elasticity modulus at low strain rate is
obtained. This last point justifies the fact that the toughened epoxy adhesive is considered

as isotropic in the normal plane where the curing pressure is applied.

E
G=—— 2.16
2-(1+v) ( )
where I is the tensile elasticity modulus and v the Poisson ratio.

As for tensile measurements, the influence of the strain gages is studied with 3D digital
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Figure 2.30: computed elasticity shear chord modulus.

image correlation. As shown in Figure 2.31, strain gages have no influence on the results,
contrary to tensile tests (Figure 2.27 and 2.28).

To conclude the elasticity investigation, it is shown in Figure 2.32 that visco-elasticity is
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Figure 2.31: influence of strain gage on the true shear strain.

a non negligible phenomenon, that tensile and compressive elastic moduli are differents
and that pressure applied during curing has a strong influence on the magnitude of the
elastic modulus.
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Figure 2.32: synthesis on the elastic moduli measurements.

2.3.2 Plasticity
2.3.2.1 Tensile plasticity

The tensile behaviour laws are identified by the SE E method, this method, as shown in
paragraph 2.2.5, needs an hypothesis to compute the true stress following equation 2.11.
For the behaviour law shown in Figure 2.34 the transversal isotropy hypothesis is used.
The transversal isotropy hypothesis postulates that in the cross section of a specimen,
g9 and £3 are equal. This hypothesis is validated by 3D image correlation technique by
measuring the strain fields on the front and the side of the specimmen at the same time.
A maximum deviation of 350 pus is observed between front and side strains (Figure 2.33).
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This difference is negligible in front of the other strain magnitudes. Tranversal isotropy
is validated. The true stress, true strain curves illustrate in Figure 2.34 highlight a high

0.02
|~ Linen'1
0.03 < Linen 2
~ Line n'3

3 ° 1
X axis - Position along X axis (in mm)

Figure 2.33: transversal strain on the cross section of the tensile specimen.

visco-plastic character. These curves show a structural softening after a certain amount
of strain. This can be explained with transversal isotropy calculation which implies the
volumetric strain developed during plasticity and furthermore damage. It is noticed that
this softening evolves with strain rate.
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Figure 2.34: true stress / true plastic strain curves obtained with SFEFE method.

2.3.2.2 Compressive plasticity

The true stress responses of compressive tests are computed with equation (2.11). As for
the tensile plasticity an hypothesis is needed for the cross-section strains 99 and £33. With
the assumption that no damage occurs in compression, the incompressibility hypothesis
is then chosen. This hypothesis is formulated as follows:

€11 + €22 +533=0 (217)
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and the compressive behaviour law is then formulated as:

SO.E- i (2.18)

where F' is the current load in the specimen, S, is the initial cross-section and &, is the
compression strain.

Curves on Figure 2.35 and Figure 2.36 show a significant visco-plasticity and saturation
phenomenon up to 1800 s~ .
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Figure 2.35: true stress versus true plastic strain for 4 MPa curing pressure specimen.
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Figure 2.36: true stress versus true plastic strain for 1 MPa curing pressure specimen.
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4 MPa curing specimens show a hook at the beginning of the curve (> 0 and < 0.1
true plastic strain) for high strain rate loadings only, this hook is not clearly visible on
the 1MPa specimens. These curves also show a structural hardening around 0.5 of true
plastic strain. A visible difference in stress level between the two curing specimen series
is observed at the same strain rate (Figure 2.37).
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Figure 2.37: influence of curing pressure on the stress level of toughened epoxy (53 s ).
The validity of the results in terms of stress and strain is checked by controlling the

shape of the specimen during the test with 3D digital image correlation (Figure 2.38).
These measurements prove that no buckling phenomena occur during the tests.

Z (inmm) —r Z (in mm)

Figure 2.38: a) initial shape and b) deformed shape with a true strain of 0.5.
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2.3.2.3 Shear plasticity

The shear behaviour law is computed by equations 2.13 and 2.14. Before to present the
shear behaviour law, a fine study on the quality of the shear loading is needed. The
principal directions of the diagonalized strain tensor are observed. This is possible with
3D digital image correlation calculations (Figure 2.39). In this figure, it can be seen that
principal vectors are always oriented at +45° of the neutral axis of the specimen but this
consideration is not sufficient to confirm the pure shear stress state.
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Figure 2.39: principal directions of diagonalized strain tensor.

In addition , the magnitude of the eigen values of the strain tensor have to be checked.
This is illustrated in Figure 2.40 which shows the evolution of principal strains during a
test on three points of the specimen (top. middle, bottom). At the middle of the test
(around 15 s) difference between the principal strains is negligible (less than 300 ps) but
near failure this difference increases (more than 20000 ps) and shear loading conditions
are no longer respected.

These considerations lead to a confidence interval on the behaviour law extracted from
the shear test (Figure 2.41).
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Figure 2.40: evolution of local principal strains during an shear test.
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Figure 2.41: shear behaviour law and confidence interval.

2.3.2.4 Non-isochoric plasticity

The non-isochoric plasticity is studied through the evolution of plastic Poisson’s ratio
obtained by DIC calculations. The value of plastic Poisson ratio decrease with the increase
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of plastic strain (Figure 2.42). This evolution and the value of plastic Poisson ratio
(different to 0.5), proves the non-isochoric plastic behaviour and the presence of damage.
The difference between the identified plastic Poisson’s ratio on classical and notched tensile
tests indicates that triaxiality stress ratio has a great influence on damage evolution.
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Figure 2.42: evolution of plastic Poisson’s ratio.

2.3.2.5 Summary on plasticity

Figure 2.43 shows the evolution of the yield stresses in tensile, shear and compressive for
two curing pressures in function of strain rate. A non negligible difference is clearly visible
between tensile and compressive behaviour in opposition of shear and tensile behaviours
look the same. In addition to these remarks a high visco-plasticity character is shown. In
terms of plasticity, a significant difference between tension and compressive behaviours is
shown (Figure 2.44).
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Figure 2.43: comparison between tensile, compressive and shear yield stresses.
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Figure 2.44: comparison between tensile and compressive plasticity behaviour.

2.3.3 Failure

For the classical and notched tensile tests, the true equivalent failure strain is computed
following equation 2.9 in which Z is equal to:

[&]]
m

12 €22 0 |. (2.19)
0 0 €99

The simplifications applied on the strain tensor Z are in total accordance with the transver-
sal isotropy hypothesis mentioned above. Although the shear strain £,5 is negligible, the
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strain value furnish by DIC computation is taken into account.

The evolution of true equivalent failure strain in function of true equivalent failure strain
rate for the classical tensile test is shown in Figure 2.45. A real dependency on the strain
rate is shown on the evolution of true equivalent failure strain in function of the equivalent
failure strain rate (Figure 2.45).
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Figure 2.45: evolution of equivalent failure strain of tensile specimens in function of the
equivalent strain rate.

The evolution of the true equivalent failure strain obtained during notched tensile tests in
function of the true equivalent strain rates is illustrated in Figure 2.46. The dependance
of the equivalent failure strain to the strain rate is confirmed.

For the shear tests, the true equivalent failure strain is computed following equation 2.9
in which Z is equal to:

(2.20)

= | €1z €22

0
0O 0 0
The simplifications applied on the strain tensor Z are in total accordance with the plane
strain hypothesis which takes place in shear test. Although the volumic strains ;; and
£99 are negligible, the strain value furnish by DIC computation are taken into account.
Due to important dispersion, a mean value for the equivalent failure strain is chosen as
illustrated in Figure 2.47. As the losipescu is only performed at one loading speed, the
strain rate dependency is arbitrary fixed to be the same as the tensile tests one.
For the compression with electro-optical extensometer only the longitudinal strain is ob-
tained, so two hypothesis have to be made. Firstly, the 9 component has to be deduced
from the longitudinal strain £y;. This is achieved by considering damage phenomenon
totally negligible in compression and 9 is computed following the incompressibility hy-
pothesis (eq 2.17):

1
£22 = —5-€11 (2.21)
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Figure 2.46: evolution of equivalent failure strain of notched tensile specimens in function
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Figure 2.47: true equivalent failure strain on losipescu shear tests.

Secondly, an hypothesis is also made for the thickness behaviour, here again the incom-
pressibility isotropy is used to compute £33. The true equivalent failure strain is obtained
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by equation (2.9) and equation (2.21)

€11 0 0
' 0 (2.22)
0 0 —(511".{;.511)

(S]]

Il
o

|
N =
;Y)
—

As for the classical and notched tensile tests, a real dependency to the strain rate is
highlighthed for the compressive tests (Figure 2.48).
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Figure 2.48: evolution of equivalent failure strain of compressive specimens in function of
the equivalent strain rate.

As a conclusion of the experimental characterization of the failure of toughened epoxy
adhesive, it is highlighted that a high dependency of the failure strain on the failure strain
rate is present. It is also shown that the failure strain depends on the kinds of loadings
and specimens (i.e. tensile, notched tensile, shear and compressive). This last dependency
is in fact a dependency on the triaxiality stress ratio and its description will be given in
the paragraph 2.4.3.

2.4 Behaviour and failure models identifications

2.4.1 Visco-elasticity model

By applying the works of Richeton et al [25] to the experimental results (Figure 2.31
(Figure 2.49). Bi-logarithmic models have to be used to describe the compressive visco-
elasticity. The tensile visco-elasticity with only two measurement points lead to a loga-
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rithmic model (equation 2.23).

l(').

(&)

0

E()=a+b.In ( : ) (2.23)

where a and b are the visco-elasticity parameters and £, a parameter needed to obtain an
adimensional logarithm.

As the tensile tests are performed with a 1 MPa curing pressure. the low strain rate model
for 1 MPa compressive tests is extended from the 4 MPa one in order to obtain a complete
description in terms of strain rate.
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Figure 2.49: evolution of elasticity modulus in function of true strain rate.

2.4.2 Visco-plasticity model

For both tensile and shear tests, a modified G’Sell laws is identified following equation
3.6. The results of this identification is shown in Figure 2.50 and 2.51.

o1s = 0y + K. (1=77) (14 higy) (2.24)

By computing the true behaviour laws from the SEFE method with the transversal
isotropy hypothesis, the damage is included into the behaviour law. If it could not be a
problem to represent a pure tensile loading it will not be the same for a notched tensile
for instance. To avoid this problem, the true behaviour laws are computed following the
incompressibility hypothesis which lead to

€11 +522+533:O (225)
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Figure 2.50: identification of tensile behaviour law.

In order to take the visco-plasticity into account classical multiplicative visco-plastic mod-
els can not be used [38] [39]. These classical models only realize an homothetic transfor-
mation of the behaviour than in experimental the shape of these laws also evolves. So as
to describe this phenomenon, a behaviour law in which each parameter depends on the
strain rate has to be used (equation 2.26). This kind of behaviour laws give a perfect
description of behaviour law.

Ot/s = 0y (€) + K (€). (1 — e7©2) (1 + hy (¢) .¢p) (2.26)

where o, is the yield stress, KA the global rigidity, w the hook parameter and h; the
structural hardening parameter.

For the compressive behaviour laws another modified model is used to describe the ex-
perimental data. This behaviour model is based on a modification of the previous model
(equation 2.26) and leads to:

oo =0, () + K (). (1—e ™) (14 hy (2) .cp+ ha (£) 22 + ha (£) £3) (2.27)
where o, is the yield stress, K the global rigidity, w the hook parameter and h;. ho, h3
the structural hardening parameters. Here again, the visco-plasticity is described by by

taking the strain rate dependance into account in order to give the best description of the
behaviour laws as shown in Figure 2.52.

2.4.3 Volume variation and damage model

By linking the observation of plastic Poisson’s ratio evolution (Figure 2.42) to a damage
evolution by:

Vp = (1 —d) .1 (2.28)
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Figure 2.52: identification of compressive behaviour law.

where v, is the measured plastic Poisson’s ratio and v, the undamaged plastic Poisson’s
ratio, a damage variable d can be identified. By using curves illustrated in Figure 2.53 an
original mathematical expression for the damage evolution is proposed

d=do+ Ky (1 — e var) (2.29)

By identifying the previous model (equation 2.29) on the different damage’s evolution
curves of Figure 2.53 a dependency on the triaxiality stress ratio is included into the
model. So as to obtain a better description of the dependency on the triaxiality stress
ratio, the hypothesis that in pure shear (i.e. 77 = 0) no damage evolution can occur is
made. Following the identification shown in Figure 2.54, 2.55 and 2.56 a detailed damage
is formulated following:

d=n.(dy + da.n) + Ko.. (1 — e""‘(“"“"?'”)'s") (2.30)
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Figure 2.53: evolution of damage for two different triaxiality stress ratio.

where d;, ds, Ky, wy and w, are parameters depending on the triaxiality stress ratio.
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Figure 2.54: identification of dy damage evolution law parameter.
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Figure 2.56: identification of w,; damage evolution law parameter.

2.4.4 Failure model

By linking the works of Johnson et al and Wierbizcki et al and following the strategy
illustrates in Figure 2.57 a triaxiality stress ratio and strain rate dependent failure criterion
is identified.

As shown in Figure 2.45, 2.46, 2.48, a logarithmic model can be used to describe the
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Figure 2.57: identification strategy for the failure criterion.

failure strain dependency on the strain rate:

I |-

101.€) = oy ) + by () dn(5) (2.31)

)

where ay, by are functions which depend on the triaxiality stress ratio 1 and £, is used to
obtain a non-dimensional parameter in the logarithm.

This procedure leads to the identification of the function a; and by in function of the
triaxiality stress ratio 7. For the formulation of the a; function, a simple polynomial
approximation is made as Figure 2.58 illustrates. The strain rate dependency represented
by the function by is identified following the data in Figure 2.59. The description of
the viscous part of the criterion is not described by a monotonic function but by three
functions as shown in Figure 2.59.

The final criterion model leads to

I m]-

£r(n,€) = (an + ay.n + ap” + apn’) + (by + b7)2-77)~177‘(+0> (2.32)
forn <0
Er(n.€) = (ago + ap.n + an.n® + ayz.n®) + by ln(%) (2.33)
for 0< 17 < 0.33 V
£/(n,€) = (apo + ay1.n + a0 + anz.n®) + (bys + b,,,4.7))‘l'n(_—é_‘%) (2.34)
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for n > 0.33

A 3D representation of the criterion is shown in Figure 2.60.
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Figure 2.59: identification of the b, function formulation.
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As the failure model is identified on restricted range of triaxiality stress ratios and strain
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Figure 2.60: 3D representation of the new failure criterion.

rates, it is necessary to check the validity of this mathematical model for higher values of
strain rates and triaxiality stress ratios. As shown in Figure 2.61, the previously identified
criterion is not suitable for triaxiality stress ratios which are higher than 0.5 and lower than
-0.5. For the extrapolation in terms of strain rates as Figure 2.62 shown, the predicted

failure strain for tensile, notched tensile and shear are correct over 400 s~ !,
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Figure 2.61: study of the failure criterion at constant strain rate on a wide range of

triaxiality stress ratios.

In order to solve these problems, the failure criterion is locked in term of strain rates and
triaxiality stress ratios as illustrated in Figures 2.63 and 2.65.
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Figure 2.62: study of the failure criterion at constant triaxiality stress ratio on a wide
range of strain rates.
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Figure 2.63: failure criterion saturation in term of triaxiality stress ratio.
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Figure 2.64: failure criterion saturation in term of strain rates.

2.5 Conclusions

This chapter brings a complete experimental description and models for a toughened
epoxy adhesive from visco-elasticity to failure. This is achieved by using new measurement
techniques like digital image correlation technique and different loading devices. Elasticity
results proves that visco-elasticity phenomena can not be neglicted. A difference between
tensile and compressive elastic moduli is found and the influence of process parameters
like curing pressure is shown. In terms of plasticity results, difference between tensile
and compressive behaviour is clearly visible. Here again, the influence of curing pressure
is highlighted. An original damage measurement is used and influence of the triaxiality
stress ratio is proven. As for the elasticity and plasticity, the failure is found as strain
rate dependent and the influence of triaxiality stress ratio is also studied.

These results leads to identification of mathematical models which will cover materials
specificities. The visco-elasticity properties are tackled with a mono and bi logarithmic
model which allow the elastic modulus to evolve with the strain rate. A new formulation
of G’Sell behaviour model is determined for the plasticity in tension and compression. An
original model for the damage evolution is proposed. it allows to take into account the
influence of triaxiality stress ratio. Finally, a failure model is identified in function of the
strain rate and the triaxiality stress ratio. These models have an impact on finite element
modeling and a new implementation is presented in chapter 3.
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2.6 Models parameters summary

Model E=a+blin (?%) € (in 57
Tension a 1982 b 130
Elasticity m (in MPa) 1204 (in MPa) 19 < 53
-234 381 > 53
Model g =0y + K. (1 —e ). (1 + hy.€p)
Oy (in MPa) K (in MPa) w h
15 17 66 29 0.05
Tension 16 19 80 2.6 1
18 31 81 0.6 50
22 32 79 1.2 100
Visco-plasticity 35 30 64 2.8 300
Model oc =0y +K.(1— e %), (1+ h1.6p + ho.£2 + hs.€3)
Oy(in MPa)] K (in MPa) | W hy hs ha
36 26 71 26 | -2.8 | -1.9 53
Compression | gg 17 137 | 58 | 23 | 43 1400
89 38 52 | 104 | -64 | 118 3500
92 26 67 | 284 | -140 | 213 - 5000
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Figure 2.65: summary of mesoscopic model parameters.
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Resume

The awm of this chapter is to present the finite element implementation of the meso-
scopic material behaviour model. It brings the complete development of visco-elasticity.
msco-plasticity equations and non-associative plasticity.
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3.1 Literature study and proposed models

Different techniques are used in the literature to model the bonded joints at the mesoscopic
scale in finite element simulations. 2D or 3D models are used in the literature. these
models are generally used to study special geometries of bonded joints or to investigate
local failure initiations. 2D models are generally tackled by plane strain elements [3] [7].
Although these models allow a fine description of stresses and strains through the thickness
of bonded joints they can not take into account deformation of adherents as illustrated in
Figure 3.1. These 2D models are also unsuitable for the modeling of complex structures.

Visible necking

Figure 3.1: example of necking in a steel single lap joint test.

In opposite of 2D models in which link between adherents and adhesives is performed by
a simple merge of coincident nodes, the link between adherents and adhesives is generally
more complex in 3D models. Of course, in a fully volumic model as illustrated in Figure
3.2a same merging technique as 2D models can be used but in the particular case of
automotive crashworthiness, volumic models of steel sheet are not representative. In the
:ase of shell modeling of steel sheets, two different point of view are used to numerically
bond the adhesive to the steel sheets as illustrated in Figure 3.2b and ¢. The first one
illustrates in Figure 3.2b would lead to realize a merge between steel shell and adhesive
volumic nodes [26], this approach is only realistic if an offset is applied on the neutral
surface of the shell elements. In complex modeling these offsets are not realizable and
this kind of modelling brings high problems in terms of physical representation. In the
second shell model illustrates in Figure 3.2c, an offset equal to half of the shell thickness is
applied between shell neutral plane and volumic adhesive element. This kind of modeling
respects the physical aspect of bonded joints but need advanced numerical techniques to
keep the offset during all the finite element simulation.

“

a) b) c)

Figure 3.2: example of necking in a steel single lap joint test.
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Many techniques are available to solve this problem:

e a tie constraint which force a slave and master surface to be at given distance from
each other,

e a multi point constraint which couples the freedom degree of a slave node to them
of a master one,

e a rigid beam which link two neighbour nodes.

In this thesis the tie constraint is chosen to combine the real physical aspect of bonded
joints to the need of shell modeling of steel sheets. In all these models, the different kinds
of failure mode of adhesive (Figure 3.3) can not be predicted. Only the cohesive and the
superficial cohesive failure can be take into account in these models. The adhesive failure
is discarded in this thesis according to the adhesive producers which considers that this
failure is the results of a wrong bonding.

adhesive failure
cohesive failure

superficial cohesive failure

Figure 3.3: different failure modes in a bonded joint.

In addition to these geometrical considerations, the literature offers a various material
models to simulate the behaviour and failure of bonded joints. Due to the lack of visco-
elastic models, the visco-elasticity highlighted in Chapter 2 is not handle in the literature.
Some visco-elastic models are implemented into FE code |40] but can not be combined
with plasticity models. In terms of yield criterion, it is shown in Figure 3.4 that classical
yield criterion like von Mises (3.1) or Drucker Prager model (3.2) [6] can not described
perfectly the hydrostatic pressure dependency as follows.

@ = Opq — Oy (3.1)
where o, is the von Mises equivalent stress and o, is the yield stress and
@ =0eg+n.Py—ay (3.2)

where o, is the von Mises equivalent stress, Py the hydrostatic pressure, 7 the sensitivity
parameter to the hydrostatic pressure and o, is the yield stress.
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Figure 3.4: evaluation of classical yield criterion.

In the literature, some advanced yield criterion are also present. The Ragavanah model
named exponent Drucker Prager [6] [40](eq 3.3) (in Abaqus) and SAMP model (imple-
mented in LS-Dyna) [41] (eq 3.4) provide a non-linear description of the yield criterion in
terms of hydrostatic pressure. The yield criterion is described by:

&= (r,.(f'ﬁ - P - Pr {3.3)
where a and Pr are material parameters in the case of the Ragavanah model and by:
¢=0 —Ag— AP — As.P? (3.4)

eq

where Ay, A; and A, are computed as following:

Ao=302 A =902 (L—-—”—’> Ay =09. (——1—”’——-> (3.5)

0.0y OOy — 3.02

where o, 0. and o; are the yield stress in shear, compression and tension respectively in
the case of the SAMP model.
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Figure 3.5: difference between exponent Drucker Prager and SAMP model.

The main difference between exponent Drucker Prager and SAMP model is focused on
the bi-axial tension and compression yield stress (Figure 3.5). But without informations
on the bi-axial tension and compression yield stresses of the investigated toughened epoxy
adhesive it is not possible to conclude on the best criterion.

In the literature, the plastic behaviour is generally tackled with tabulated behaviour law
to simulate a visco-plastic (Figure 3.6).

Yield stress

6 <6 <CE<KE

Plastic strain

Figure 3.6: illustration of tabulated visco-plastic behaviour law.

Non-isochoric plasticity is commonly modeled with non-associative plasticity [6]. The
theoretical aspects of this approach are detailled in paragraph 3.5.1. Failure in bonded
joints are generally not taken into account in literature. In terms of failure criterion, the
most common failure models present in FE codes are exposed in Chapter 2.

In this work, the visco-elasticity is tackled using model previously identified (eq 2.23).
The yield criterion is modeled by a bi-linear Drucker Prager model due to the lack of data
in bi-axial tension and compression. The visco-plasticity is described by the following
models :

oy =0y (8) + K (8). (1 — e™©2) (1 + hy (€) &p) (3.6)
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for the tension behaviour and:
— : : —w(é).e : 2\ .2 1y 3
oe=0,()+ K (). (1-e ). (1+ by (8) .p + o (€) €2 + h3 (€) .€3) (3.7)

for the compressive behaviour.
Volume variation is tackled with a non-associative approach and damage evolution by :

d=mn.(di + da.n) + Ko.p. (1 — e~ ertwanler) (3.8)

Finally the failure is predicted by :

, E
E71(n,€) = (a0 + a1+ a2.n® + agg.n®) + (b + bn2-77)-l""(:é.“) (3.9)
0
forn <0
, 3
£1(m,€) = (ayo + am.n + an2.n® + ay3.n°) + b,,l.ln(%—) (3.10)
: 0

for 0< 7 < 0.33

. 5
£1(1,€) = (a0 + 1)+ ar2” + aya. ) + (bys + bya-m).dn( =) (3.11)
0

for n > 0.33

3.2 General description of the material behaviour
model

The implementation of the mescoscopic finite element model follows the classical steps
of a material subroutine. The mesoscopic model is implemented through a VUMAT
subroutine into Abaqus explicit. This kind of subroutine gives a strain increment tensor
in the local basis of the element and requires the export of the stress tensor also in the
local basis.

Firstly an elastic prediction is realized using the strain increment tensor following by a
yield criterion check. Until the yield criterion is not satisfied the material is assumed to
be fully elastic. If the yield criterion is satisfied then a yield return algorithm is applied
and the stress tensor is updated [42] (Figure 3.7 a).
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Figure 3.7: a) general overview of the algorithm and b) description of elasticity algorithm

3.3 Description of elastic prediction

The elastic prediction is realized like a viscous-damaged elastic prediction following the
algorithm illustrated in Figure 3.7 b. As the visco-elasticity is taken into account an
equivalent strain rate is needed (Paragraph 3.3.1), moreover the visco-elasticity models
- are different in tension and compression so a numerical test has to be done. This test is
based on the sign of the volumetric strain here called ey defined by 3.17. The equivalent
strain rate is computed and the tension/compression test is done then the damage variable
from the previous step is called and the viscous-damaged elastic prediction is performed
(paragraph 3.3.3).

3.3.1 Strain rate computation

The equivalent strain rate needed for the visco-elastic prediction is computed following:

o}

(3.12)

o

/2
= /5.

where % is the strain rate tensor.
As the strain rate tensor is not computed by the FE software to the VUMAT subroutine,

by David MORIN



58 Chapter 3. Mesoscopic material behaviour model

the strain rate tensor is computed from the strain increment tensor A€ following

Aey;  Aeiz  Ags

LA X e (313)
ot Aé‘fs Aszs Ae:t;:; At
At At At
The equivalent strain rate is then computed following
2 AF Az \3AEAE A (314)
3At T At At At ‘

As this kind of computation leads to noisy results, a numerical filter is used (3.15). This
filter is extracted from PAMCRASH finite element software [43] and level of filtering is
adapted by changing the value of parameter « (typically chosen equal to 0.3).

é—f‘iltered = Ck.?(t) + (1 - 04) -é(t—At) (3.15)

3.3.2 Total strains and volumic strain computation

In order to realize a damaged-viscous elastic prediction, the total strain tensor and the
volumic strain have to be computed. For that, the strain increment tensor given by the
FE software is added to the converged elastic strain from the previous time step

€= Ee(t—Ac)

+ A (3.16)

where ?e(t_ an 1S the converged elastic strain tensor from the previous time step.
Then the volumic strain is computed for the previous tensor

3
ev =) e (3.17)
i=1

3.3.3 Damaged-viscous elastic prediction

In order to realize a damaged-viscous elastic prediction, the viscous-modulus has to be
computed following equation 2.23. The choice of the compressive or tensile model is
realized by testing the sign of the volumic strain (equation 3.17). For the special case of
pure shear loading the visco-elastic behaviour is assumed to be the same as tensile due
experimental observations. Following the previous prescriptions, the damaged viscous
elastic prediction is realize with

E.(1—d) ev E.(1—d)
TRIAL TRIAL
.. = —-_-———— ZI — — o = — iq .1
S 11 G ) sy 2.1+ ) Y (3.18)
E.(1-4d)
TRIAL _ _ ]
Pr o 3(1—2v) €V (3.19)

where d is the damage variable of the previous time step, E the viscous elastic modulus
and v the Poisson’s ratio. In addition the equivalent stress is computed following the von
Mises theory:

oTRIAL _  [3 ], (§TR1AL) (3.20)

eq
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where J, 1s the second invariant of the deviatoric stress tensor defined by

(3.21)

=TRIAL 1 _rr1AL =TRIAL
J2 S == 5.8 . S

3.3.4 Time step consideration

A special consideration is devoted to the time step needed for the finite element simulation.
In Abaqus explicit, the time step of the FE simulation is computed from a fictitious time
step. According to 1.1 the time step calculation depends on the elastic modulus so for a
visco-elastic model in which the elastic modulus evolves with the strain rate, the highest
elastic modulus has to be given for this calculation. This special consideration is done to
ensure the stablity of the FE simulation.

3.4 Yield criterion

A yield criterion is used to determine if the plasticity has to take place. To model the
yield difference in tension, shear and compression a bi-linear Drucker-Prager criterion is
used. As this criterion is composed of two linear Drucker-Prager, a tension/compression
test has to be carried out using the volumetric strain (Figure 3.8).

Viscous damaged
elastic prediction

ension-shea ompression
jeld criterio! ield criterion

Figure 3.8: yield criterion algorithm.
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3.4.1 Definition of the yield criterion formulation

The bi-linear Drucker Prager is formulated following equations (3.22) and (3.23). This
yield criterion is illustrated in Figure 3.9.

Figure 3.9: illustration of the double Drucker Prager yield criterion.

where o0y, 0, and o, are yield stresses in tension, compression and shear respectively,
f1 and [, are the friction angles related to yield stress difference in tension, shear and
compression.

The mathematical formulation of the criterion is explained as below:

¢ = Oeq +tan (41) .Pu — (1 + %) (1—d).o¢ (3.22)
¢ = Ocqg +tan(Ba) .Pu — (1 — w> (1-d).o. (3.23)

3.4.2 Selection of yield criterion

The selection of yield criterion is realized following the same technique as for the visco-
elastic model selection. The yield criterion is then selected with the sign of the volumic

strain. As for the visco-elastic prediction in case of pure shear the yield criterion defined
by 6; (3.22) is chosen.

3.5 Yield return algorithm

If the yield criterion is not satisfied then a yield return is needed to determine the plastic
strains which occur in the time step. For the case of tensile loading, the non-associative
approach is chosen (paragraph 3.5.2), a short description of the fundations of this approach
is given in paragraph 3.5.1. In the particular case of the shear and compressive loadings,
the classical von Mises plasticity is used due to the hypothesis that no damage phenomena
can occur (paragraph 3.5.3).
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3.5.1 General overview of associative and non-associative plastic-
ity
The non-associative plasticity is used to model non-isochoric plasticity. The volume varia-

tion during plasticity is represented by a plastic strain rate tensor which has a dependency
to the hydrostatic pressure. The plastic strain rate tensor is obtained by

AT = Av.N (3.24)

where A~ is the plastic multiplier and N the return vector.
For the particular case of a von Mises plasticity, an example of an associative and non-
associative plasticity is shown in Figure 3.10. In associative plasticity, the return vector

N is obtained by differenciation of the yield criterion as equation 3.25 shows. In non-
associative plasticity, the return vector is obtained by differenciation of a plastic potential
é as equation 3.25 shows. For the particular case of the von Mises plasticity, the plastic
potential has to be chosen with a hydrostatic pressure dependency so as to obtain a non
normal return vector.

s op = Do -
Afassoc»iatiz'e == % A/Vnonassocdatiw = ;,;%— (325)
Oqu

associative plasticity

non-associative plasticity
von Mises yield surface /

i

> Py

Figure 3.10: illustration of the difference between a non-associative and associative plas-
ticity in the von Mises case.

3.5.2 Description of the plastic potential and the yield return
vectors used for the tensile loadings
In order to model the non-isochoric behaviour of the investigated toughened epoxy adhe-

sive, the following plastic potential is chosen

@ = ()'z,;lRIAL + tan ). Py (3.26)
where (JZ;JRI AL is defined by 3.20 and v is the dilatation angle defined by:

3.(1-2.(1-4d).1p)

t;_, ==
A W S vy

(3.27)

where v, is plastic Poisson’s ratio and d the damage variable of the previous step.
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Here the damage variable is included in the dilatation angle so as to translate the variation
of plastic Poisson’s ratio observed during the experiments.
A 3D representation of the plastic potential is given in Figure 3.11.

-0s
3

Figure 3.11: 3D representation of the plastic potential.

As the return vector is obtained by differentiation of the plastic potential a special atten-
tion has to be made between smooth and apex cone return. The smooth return vector is
obtained by

= 3 3

Ni= oo (3.28)
NN
N, = tag‘bj (3.29)

where ﬁd and 7\_7,, are the counterpart of deviatoric stress and hydrostatic pressure to the
return vector respectively.

Figure 3.12: schematic representation of the apex derivation problem.
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The apex return vector is more complicated than the smooth one due to the discontinuity
at the apex of the cone [42]. It has been theoreticaly proven that the solution of this
derivation problem is contained in a complementary cone as illustrated in Figure 3.12.
Applying workguidelines provide from [42] the return vector to the apex is determined
by:

Ng=1{ (3.30)

N, = tany.] (3.31)

where N, and N, are the counterpart of deviatoric stress and hydrostatic pressure to the
return vector respectively.

As illustrated in Figure 3.13a the choice of the appropriate return vector is realized by
determining the sign of the following relation:

Teg — LAY (3.32)

Then the two kinds of return vectors are shown in Figure 3.13 b.

------ yield criterion
plastic potential

sssssssmsse Teturn vector

Figure 3.13: a) selection of the appropriate return vector and b) resulting return vectors.

3.5.3 Description of the yield return for the shear and compres-
sive loadings

For the shear and compressive loadings, the assumption of no damage evolution is made,
so classical plasticity theory is used. The effect of the classical plasticity theory is focused
on the formulation of the return vectors. As explained in Figure 3.10 the return vector
as to be fully deviatoric to model an isochoric plasticity. From the previous formulation
explained in paragraph 3.5.2 in which the return vector is expressed

N =0Ng+N,. (3.33)
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The deviatoric part of the return vector N, is equal to:

|
0l

J?Vd = ——‘——-"'——':— (334)
“\/3.4(3)

and the volumetric part N, is equal to 0. A summary of the return vectors for tensile,

shear and compressive loadings is given in Figure 3.14.

...... yield criterion

———— plastic potential
1 ssmsmms return vector

Figure 3.14: return vectors for the tensile, shear and compressive cases.

3.5.4 Description of Newton-Raphson algorithm

The return to the yield surface is performed by using the implicit closed point method
[42] |44] (Figure 3.15).

Ay ||D" N..]

elastic domain at tu

Figure 3.15: illustration of closed point method.
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The computation of the plastic multiplier needed to determine the equivalent plastic strain
is carried out with a Newton Raphson algorithm. Here the description of this algorithm is
only realized for the smooth return vector of the plastic potential and for the tensile-shear

of yield criterion.

Initiate guess
Ay=0

Compute evolution
of Ay

Y

Compute new

equivalent plastic strain

Y

Compute new
consistency relation

Figure 3.16: Newton Raphson algorithm schema.

At the beginning of the Newton Raphson algorithm, the plastic multiplier A+ is set to 0.

Then the evolution of Ay is computed following

Avwy = Aygp-1y — DY

(3.35)

where k is the current iteration of the Newton Raphson algorithm and A+ is computed

by
Ay = Boome
0Qy

where ¢c.ns 1s the consistency relation defined by

Peons = Teg — 3.G.Av + tan fi. (P?;RIAL — K.tan) — (1 +

where ( is the shear modulus defined by

E.(1-d
A
14+v
and K is the bulk modulus defined by
E.(1-4d)
K= 3.(1-2.v)

(3.36)
tanéﬁl)) (1 —d) Otin1)

(3.37)

(3.38)

(3.39)
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The derivative of the consistency relation by the plastic multiplier is formulated as follows

f)Q)C(ITI«S
OAY

3 OA~

/

tan (3 doy,, .,
= —3.G —tan (3. K. tan ¢ — (l + M]—)) (1 —d) () (3.40)

The derivative of the plastic behaviour law by the plastic multiplier is not realize analyt-
icaly but numerically (Figure 3.17).

A

0ot

w 0A~y
R
3;; /
= 418
= 28
< 1 1
2 Pf
= Vol
=3 . |
- |

: : EP'IH»I + T%—ga

| o
. Ag / Epnn Equivalent plastic strain

Epn+1 ~ 1000

Figure 3.17: illustration of numerical derivation of tensile plastic behaviour law.

The equivalent plastic strain is then updated using

p(t — At) + Ay.|N]. (3.41)

\’))|

p(l)=

m)

The plastic behaviour law is then updated and consistency relation too. Until the conver-
gence criterion (equation 3.39) is not reached, the iterative Newton Raphson algorithm is
used.

CYDC()I') S

of

2 1e™®, (3.42)

3.6 Results update

If the material is considered purely elastic. Stresses are updated with the elastic prediction
as follows

Fogy = FIOAL | prEiaL T (3.43)

If plasticity is developped then the stresses are updated by using the following expression

= . “ E. (1 - d) AP} =TRIAL STRIAL E. (l i (1) ) ’
Ontl = <1 - 3. 9. (1 n 1/) .Ug;IR,AL T -+ ‘[H = m.tdn QA') .
(3.44)
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The elastic strains are also updated by using a ratio of the previous relation

Font1 = ( (1+v) 3 _Ay > FTHIAL + (M.PTRIAL — -l-.tan w.Afy) I

E.(1—d) 2 oTRIAL E(1-d) 3
(3.45)
The damage parameter is updated using
dny1 = dp + Ad (3.46)
where the damage increment Ad is computed as follows
Ad = d (n,gp (t)) — d (i, Ep (t — AL)). (3.47)

As shown is Figure 3.18, this kind of damage update avoid a jump in damage evolution
and ensure the stability of the calculation.

A . s

n: < Ne

Damage variable d

Plastic strain >

Figure 3.18: illustration of damage update technique.

3.7 Summary of the mesoscopic behaviour model im-
plementation

The algorithm implemented into the subroutine VUMAT is represented in Figure 3.19.
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Figure 3.19: algorithm of the implemented behaviour model.

3.8 Conclusions

This chapter brings the complete description of the material model used in the mesoscopic
FE analysis. This model is able to capture all the mechanical behaviour specificities
of the considered toughened epoxy adhesive identified in Chapter 2. This is possible
by combining a visco-elastic model followed by a hydrostatic pressure dependent yield
criterion. The non-isochoric plasticity is tackled by a non-associative plasticity and a
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triaxiality stress ratio dependent damage model. The full model is implemented into
ABAQUS explicit code through a user-material subroutine and is available for volumic
elements.
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Resume

The aim of this chapter is to present the finite elemment implementation of the macro-
scopic finite element model. Here are described the simplification needed for the macro-
scopic representation of bonded joint in finite element. Moreover the numerical implemen-
tation is also described with the elasto-visco plastic behaviour and the failure initiation and
propagation.
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4.1 Literature study and proposed models

The main limitation of modeling bonded joints in finite element simulations in industrial
context is focused on the time step used in explicit calculations. This time step is evaluated
with the classical criterion of Friedrichs and Levy [45]:

P
At=1.4/5 4.
5 (4.1)

where [ is the shortest length of the considered element, p its volumic mass and F its
elastic modulus.

In the particular case of a typical crashbox in steel (Figure 4.1), a typical industrial
approach could lead to use the mass scaling to artificially increase the volumic mass to
reach the time step of steel shells. A such approach leads to an increase of ~ 200 % of
adhesive volumic mass and results into a non-physical representation of bonded joints.

Steel shell 5 ) mm

300 mm I

60 mm 1
0.3 mm

-

80 mm Adhesive volumic

-
120 mm

Figure 4.1: typical crashbox configuration.

To avoid this problem some special purpose elements have been designed on the basis of
the spring element (Figure 4.2), which its time step is defined by

myp.me 1
At -

I
o

e 4.2
my +ms k )

where mq, my are the masses at the spring boudaries, k its rigidity and m, o, & are defined

by:
_AE

l
where m . is the mass of the connected steel element, M gpnesive the mass of the adhesive
element, A its cross-section area and [ its length.

k
1M 112
o*\\\\®

Figure 4.2: representation of spring element.

My 2 = Mygpeel + '2'-7”'(1(1}7081"1'« k

(4.3)
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An application of the spring element time step is given in Table 4.1, this table shows the
difference between the time step obtained with a classical volumic element and with the
spring one. The advantage of the spring element time step is then clearly highlighted.

Al le®m

E | 2.5’ Pa
1 | 0.3 mm

] Spring element | Volumic element
Time step (in ps) | 1.9 l 0.2

Table 4.1: adhesive element properties and related time steps.

In addition of classical spring element, this time step formulation is also used in interface
elements [46| due to the small or non-existent thickness of the elements. In the interface
elements [47], the stress tensor is reduced to (Figure 4.3):

0 0 =, O
T = on T | = | ™ (4.4)
0 ‘ sz

where o, is the normal stress to the interface and 7,, 7, the tangential stress to the
interface.

T2

a)

Figure 4.3: a) representation of stress tensor in an interface element and b)justification
of interface elements.

Before to present the available interface elements in the literature, the modeling of bonded
joints as interfaces has to be justified. Firstly, the thickness of bonded joints (typically
0.3 mm) can be totally neglicted in face of a crashbox length (typically 300 mm) and of
course in face of a car length (4-5 m). In addition to these geometrical considerations,
in the case of a normative single lap joint test (Figure 4.3) the deformation which occurs
in steel sheets does not take place on top and bottom of bonded joints. So the stresses
and strains which occur in the bonded joint plane can be totally neglicted because no
deformation of adherents will occur and then there is no effect of the adhesive Poisson’s

ratio.
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The interface elements used in literature to model the bonded joints are generally the
cohesive zone models. These cohesive elements are divided into two families (Figure 4.4):

e the discrete cohesive zone models (DCZM),
e the continuum cohesive zone models (CCZM).

The difference of these two kinds of models is focused on their 'geometries’, in one hand
there is the DCZM [48, 49| which represents the bonded joints with springs and on the
other hand the CCZM [50. 51| represents the bonded joints by a volume.

/— Steel shell ——\

Adhesive DCZM Adhcs!ive CCZM

Figure 4.4: difference between discrete and continuum cohesive zone models.

The DCZM and CCZM also differs from their traction-separation laws. The traction-
separation law of a DCZM or CCZM defines the behaviour and failure of the adhesive
interface. A simple comparison with the attraction and repulsive between two atoms
explains the principle of a traction-separation law (Figure 4.5). Until the maximum force
F,,, is not reached, the deformation process is reversible but after this maximum force,
the phenomenon is irreversible but each atom still feel the attraction force of the other.

F

A
F -F
S
"% ¢ %

Figure 4.5: illustration of the principle of a traction-separation law.

Based on this principle, different traction-separation law are available in the literature for
the DCZM and CCZM models. The traction-separation laws of CCZM are obtained by
differenciation of a cohesive potential ¢ depending of the sliding and opening displace-
ments d,, & [52]. For the DCZM models the traction-separation laws are not obtained by
the differenciation of a cohesive potential but are defined following classical mechanical
properties. So depending on the material properties, different traction-separation laws
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are available in the literature. For the brittle materials, a classical triangular law is de-
fined (Figure 4.6a) in which the material is then considered as purely elastic [53]. For
the ductile materials, a traction-separation law (Figure 4.6b) with a pseudo-plasticity has
been designed by Tvergaard et al [54].

- 5 6 =6 O!
a) b) ¢)

Figure 4.6: traction-separation laws for a) brittle, b) ductile materials and ¢) equivalent
formulation.

Some DCZM and CCZM models are not defined on 3 independent springs like classical
interface elements but use an equivalent formulation (Figure 4.6¢). In these elements, the
traction-separation law is then a function of an equivalent opening displacement A\ defined

by:
o 8 c N 2 e N\ 2
{6, 5 5, |
=G+ G () -

where 90, , d;, and 4., are the critical opening and sliding displacements.

The classical properties of such elements like elastic modulus (F) and the peak
stress () can be identify on classical butt joint tests (Figure 4.7) and the failure energies
(Gyy1r) are classicaly identify on pre-cracked specimens. Although this identification can
be realize directly on experiments using the theory of linear elastic fracture mechanics
for the brittle materials or with the non-linear fracture mechanics for the ductile ones
or numerically using J-contour integrale techniques, they always lead to a complex
identification technique with high level hypothesis.

In this work, a new cohesive element is then proposed based on the time step of the
spring element and using 3 independant springs (Figure 4.8). On the basis of an interface
element, the main mechanical properties of a toughened epoxy adhesive are taken into
account:

e clastic moduli and yield difference in tension/compression,
e hardening visco-plasticity,

e damage evolution.
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Figure 4.7: cohesive elements properties identification.
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Figure 4.8: new cohesive element properties.

Moreover the element elimination is handled with a physical aspect (Figure 4.9), the peak
stress is defined as the crack initiation and the decreasing stress is then translated as the
crack propagates through the element.

o)

Crack initiation

Crack propagation

Total failure
of the element

3

.

:\-'
‘B R RRLL

Figure 4.9: crack propagation through an element.

In terms of properties identification, the classical properties like elastic moduli, visco-
plasticity and damage are identified on bulk adhesive specimens (Chapter 2) using a
simplify analysis. The failure initiation and propagation are then identified on assem-
blies tests like double lap joints tests for shear properties and double U tests for tensile
properties.
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4.2 User-element implementation

4.2.1 General description of finite element implementation

The proposed cohesive element is implemented in ABAQUS explicit FE code. In ABAQUS
explicit, the cohesive element is implemented into a Vectorized User Element (VUEL)
subroutine, this subroutine gives an access to each step of the explicit finite element
computation. In equation (4.6) the mass matrix M"’ and nodal forces F({) have to be
provided by the user. For the equations (4.7) and (4.8), the critical time step has also to
be provided by the user.

iich = (MY "(Pdy — F) (4.6)
' Aty + Aty .
- N o (i+1) (¢) N y
Uisd) = U1 = 5 (I (4.7)
N N « N J
Uis) = Uy + DU, (4.8)

Then each step of the VUEL is described in Figure 4.10.
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I Mass matrix computation |

Update displacements
I o =u™l 4 Atn-lﬁn—gJ
|

Cohesive element
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User
element ?

Element basis computation |

|
[()pmingj sliding d.hplacanmul

Classical FE calculation
|Z'§“" - fn. BTa"dvl I Stresses computation l

| Nodal forces computation |

Critical time step

| A" = min (A", At?)

Internal forces assembling
N
I foe= 2-:1 f?n: e I
°

Elements loop

New accelerations

[ o= M- ) |

New velocities ]

arth =it 4 (a1 4 ar) &)

Time update l
l L A I

Time loop

Figure 4.10: flowchart for the implementation of the cohesive element.
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4.2.2 Mass matrix computation

In explicit software, the mass matrix has to be provide under a diagonalized form and
its computation is only performed one time at the beginning of the simulation. The
diagonalized form is needed so as to accelerate the computation. So as to circumscribe
the time needed for the diagonalization of a classical mass matrix (equation 4.9), the
lumped matrix technique is used [55].

MY = / NTpNdQ (4.9)
Q

where N is the matrix of the shape function of a classical 8 nodes element and p the
density of the adhesive.

The lumped matrix technique defines a diagonalized matrix by the sum of each row as
described in equation 4.10. The error made with this kind of calculation is important if
during the simulation the mass matrix is updated [55].

ST M(i,:) 0
MM = 2. Mi:) ) (4.10)

0 MG,

4.2.3 Local covariant basis computation

A local basis inside the cohesive element is needed to obtain the displacements feels by
the element. For that a local covariant basis (Figure 4.11) is used.

Figure 4.11: illustration of local basis.

In this basis, a shell is defined in the middle plane of the element. In this plane a position
vector is defined as:

Ny
§(&1,&) = Z Np(é1,&)s™ (4.11)

n=1

where & , & are the normalized position in the plane (0 < ¢ < 1), s® the position vector,
N, the matrix of the shape function of a classical 4 nodes element.
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From the position vector §(&;, &) the two in-plane vectors (@;, @, )of the shell are defined
by derivation of s(&;, &) following

05§ ON,, - ON,, -
aj = = 2gn a mgn, 4.12)
()51 ; ()51 a&? nz: dfz (

The local basis vectors which are normed, are computed from the surfacique element

vectors following:

« 8 tAa 5
. SR T il N ETY (4.13)
lla: | [|az|l

4.2.4 Opening and sliding displacements description

Like the local basis is defined, the opening and sliding displacements are then computed
from the projection of the relative displacements in the global basis to the local one. The
relative displacements are computed follows

Uy +Us: Uz+U Vi+ Vs Va+Vy Wi+Wo, Wi+Wy
Co Dyt o gty letly , H Wt \
Voot Vot W=—l-g (4.14)

where U,_4, Vi, Wi_, are the relative displacements computed under each pairs of
nodes as illustrated in Figure 4.12.

By realizing a such calculation, the relative displacements [/, V and W are ob-
tained in the center of the element like a classical computations of an element with one
Gauss point.

1 T e
/ a

Figure 4.12: example of relative displacements computations for U and V.

Then the opening and sliding displacements (4,,, §; and 4, ) are obtained by the projection
of the global relative displacements into the local basis
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U U U
=1V A =V t b=V 7 (4.15)
W ... W ... W ...
TyY,2 Y,z T,Y,<

4.2.5 Strains and strain rates computations

The tangential and normal strains of the cohesive element are computed from the local
opening and sliding displacements following

On o 0r
En=1In(l+— g = In(l +
( Ly,o) ¢ = In( Too

where Ly o, Lyp and Lo are the initial dimensions of the element as shown in Figure 4.13.

) e =In(l+ ) (4.16)

Figure 4.13: illustration of initial element dimensions.

This kind of strain computations is only valid if the bonded joint is modeled with its true
thickness and not as an interface (thickness equal to 0).
The strain rate is computed by a backward finite difference

= E@) — E-At)
= et VT 4.1
5 At (4.17)
where £ is computed from
2_- -
E=4/=E:€ 4.1
g 5 E:E (4.18)
with £ the strain tensor defined by
0 0 &t
E=| . €, & (4.19)
0

4.2.6 Stresses computations
4.2.6.1 Description of elastic prediction

With the previous strains (equation 4.16), three elastic predictions are then realized for
the three independent springs following:
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Onp = E‘n-En gy = Et.Et Or = Et.€¢ (420)

where E, and F; are the elastic moduli in tension/compression and shear respectively.
Here different moduli are assigned for the tension and compression.
Following the elastic predictions, three yield criteria are then applied with:

fa=opm—on  fri=op—0r fr=0p-o0; (4.21)
where o0,, and o,; are the yield stresses in tension/compression and shear. Here again
different yield limit are assigned for both tension and compression.

To take into account the dependency of the yield stress to the strain rate, the yield stresses
are formulated following

Oyne = Ay + BLE"  Oyn. = Ap+ B.E” (4.22)

From the experimental observations of Chapter 2, the yield stress in tension and shear
are assumed to be equal.

4.2.6.2 Description of plasticity and yield return algorithm

Until the yield criterion is reached the yield return is realized by a direct method. Firstly
the plastic strains for the 3 independent springs are computed following

_ Uyn . o'yt
Epn = En — Ept =& —

E £y =g, — 2 (4.23)

E, TR,

Then a correction is applied on the stresses following;:

On = Oyn + (1 — d).Ern-€pn, ot =0y + (1 — d).Bry.ep or =0y + (1 — d).Bri.epr
(4.24)
where FErp,, Ery are the tangent moduli in tension, compression and shear and d the
damage variable. The damage variable d is updated before the stress corrections with an
exponential formulation:
d=do+dy. (1 —e %), (4.25)

Here the damage is only dependent of the normal plastic strain due to the hypothesis that
in pure shear there is no damage evolution.

The effect of strain rate on the structural hardening of the behaviour law is managed with
viscous tangent moduli. These tangent moduli are expressed with polynomial approxi-
mations.

4.2.7 Nodal forces update

When the stresses corrections are completed, the VUEL subroutine requires an update of
the internal forces of the element. The internal forces are updated by a projection of the
local stresses on each nodes (Figure 4.14).

To prevent the large rotations of the element, an incremental update of the internal forces
is realized as follows
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F, ST o)

Figure 4.14: illustration of nodal forces update.

Ag,
F.(t) = F.(t —At) + | Aoy Z.S0.(1 — d) (4.26)

- - At T

E)(t) = Ft - At)+ | Agy .So.(1 —d) (4.27)
Ao, | .

- < atT

F.(t) = F.(t — At) + | Agy .2.50.(1 — d) (4.28)
VAT

L < a7

where Sy is the initial resistant section of the element (Figure 4.13) and Ao,, Ao; and
Ao, the stress increments in the local basis. It could be noticed that the damaged section
is used to update the nodal forces.

4.2.8 Element elimination
4.2.8.1 Failure initiation model

The failure initiation is detected with a criterion based on the opening and sliding dis-
placements. This criterion is divided into two suberiteria (equation 4.29 and 4.30 ) due
to the assumption that no crack propagation occurs in compression. Then, the criterion
for tension and shear loading is defined as

() otcril ()l!:ril

Nerit

Ahn,:=\/< I yey (e (4.20)

where §,,,., and 0,, ., are the critical opening and sliding displacements. In case of com-

pressive loading the failure initiation criterion is then defined as

xwzwdwuwasz (4.30)

()t('r’ti

A geometrical description of the failure is given in Figure 4.15.
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6n

a) b)

Figure 4.15: failure initiation criteria in the a) tension,/shear and b) compression /shear.

4.2.8.2 Failure propagation model

Once the failure is initiated inside the element, a special algorithm is devoted to the
crack propagation through the element. The crack propagation through the element is
represented in Figure 4.16 by the decreasing of all stresses (here named o;) until they are
equal to zero.

Oi

A . v o
Failure initiation

4

Crack propagation

Total failure
of the element

s
Gl U]

Figure 4.16: illustration of effect of crack propagation through an element.

The stresses of each springs are decreased using:

=
g; = {—m(t == t’inif) + Tiinie (431)
‘TUP
where o, ,, and {;,,;; are the stress and time at failure initiation respectively. As the crack
propagation through an element is depending of its size, a homogeneization parameter
lrup 1s used. This parameter represents the time needed by a crack to cross an element
(Figure 4.17) and is defined by

{ . L.z'.O
rup T
Vp

(4.32)

where L, g is the size of the element (Figure 4.17) and V), the crack propagation speed.
As the crack propagation is dependent of the loading speed, V,, is defined by
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Adhesive element

Figure 4.17: illustration of crack propagation through an element.

V, = h.V,, (4.33)

where h is the ratio between equivalent loading speed and crack propagation speed. The
equivalent loading (Figure 4.18) is defined by

V;?q == | ‘:q I — \/5.112 =+ (;[2 + (5:12- (434)
where 5n. 51 and 57 are defined by:
U U U
bh=| V A =]V £ &=V 7 (4.35)
Wl . W . . |/ P
Z,Y,2 Z,9,2 EH,Z
n

Figure 4.18: equivalent loading speed.

In explicit integration scheme, element elimination is always submitted to the question of
stability. Although a physical aspect in element elimination is interesting, the numerical
stability of the computation has to be guaranteed. For that a study on a simple numerical
test is performed to investigate the effect of the element elimination on the force response
of an assemblies. The assembly (Figure 4.19) is made of two U steel modeled with shell
elements and linked by a macro element of adhesive. In terms of boudary conditions, all
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block along z
B block along y
I block along x
B Loading speed 0.5 s™

Steel shell

xtz(y

Adhesive volume

Figure 4.19: boundaries conditions and loading speed applied on tension numerical test.

displacements and rotations are blocked on the 4 nodes of the U bottom and a speed of
0.5 m.s™! is applied on the 4 nodes of the U top.

Then the stability of the computation is studied by looking the reaction force along x axis
(Figure 4.20 a and b).
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50 | — 500 increments
— 1000 increments
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Figure 4.20: reaction force a) until crack propagation through the element and b) after
the failure of the element.

It can be noticed that for a given time step, the stability of the computation after the
failure of the element is highly depend on the increment numbers (Figure 4.20a and b).
Using the time step of this computation, the ratio i between the crack propagation and
the equivalent opening speeds can be easily computed from the number of increment and
the width of the element. Assuming that on the simple study case, 250 increments is
sufficient to remove the element and ensure a reasonnable stability, the maximum ratio
h is then found at approximately 28 (Figure 4.21). This criterion is used as a numerical
security factor.
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Figure 4.21: numerical study of the ratio h.

4.3 Crack propagation through a mesh

In addition to the propagation of a crack through a mesh, an experimental technique is
defined in the element to propagate a crack through a mesh. This technique is based on
two criteria:

e presence of a crack at the boundary of the element (Figure 4.22 a and b),

e reaching a mechanical criterion (equation 4.36).

On 0 0,
Morop = 4| (=) + ()2 + () 2 @ (4.36)
6 5tcrit atcrit

Nerit

with « < 1 for a crack propagation using Non Linear Fracture Mechanics.
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— Steel shell
element of interest

possible places for a crack

adhesive

b)
Figure 4.22: schematic representation of boundaries tests a) in face and b) in normal

plane of the bonded joint.

By choosing a equal to zero the crack propagation is realized like in Linear Elastic Fracture
Mechanics as Figure 4.23 shows in the special case DCB like test.

Speed loading
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Figure 4.23: example of LEFM crack propagation a) DCB like simulation and b) evolution
of stresses.

Although this technique is very interesting wide limitations are always present
e the perfect knowledge of the mesh numbering is mandatory,

e in ABAQUS explicit the numnerical test are limited to a patch of 136 elements due
to the block matrix computations.

Due to these limits, the use of this technique of crack propagation through a mesh is only
suitable for laboratory tests and not for real industrial cases.

4.4 Properties identification

4.4.1 Work guidelines

The properties of the macroscopic approach are identified on two different kinds of tests
(Figure 4.24)
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e on bulk adhesive specimens (Chapter 2) for the behaviour parameters,

e on assemblies tests for the failure initiation and propagation parameters.

Figure 4.24: macroscopic approach properties identification guidelines.

4.4.2 Behaviour properties
4.4.2.1 Elasticity properties

The elastic properties are extracted from Figure 2.32 only for high strain rates and are
summarized in the following table

1 Tension g Compression

Elastic modulus (in GPa) 1 3 f 2

Table 4.2: summarize of the elastic properties of the macroscopic approach.

4.4.2.2 Plasticity properties

The plasticity properties comes from Figure 2.36 and 2.41 but are analysed with a simpli-
fied approach. The yield stress and its evolution with the strain rate is directly linked to
the tangent modulus identification (Figure 4.25). The yield stress used in the macroscopic
approach is determined by the intersection of the tangent modulus and the stress axis and
an error is done on its evaluation.

Then following the previous principle, the yield stress in tension (Figure 4.26a) and com-
pression (Figure 4.26b) are identified and mathematical models (equation 4.22 are iden-
tified.

The corresponding tangent modulus are shown in Figure 4.27 and the same tangent mod-
uli in tension and compression are used. As the shear properties are not identified for
different strain rates an extrapolation is carried out from the compression data.
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Figure 4.25: identification of yield stress in macroscopic approach.
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Figure 4.27: identification of tangent moduli in macroscopic approach.
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4.4.3 Failure properties
4.4.3.1 Specimens geometries and loading devices

The failure properties (6n,,;,, 0tersi,n) are identified on assemblies tests, the tensile proper-
ties on double U specimens and the shear properties on double lap joint specimens. The
geometries of the double U and double lap joints specimens are given in Figure 4.28 and
Figure 4.29a and b respectively. For the double lap joints tests, two geometries are used
so as to be adapted to the loading device.

30

&,

Side view

Front view

Figure 4.28: geometry of the double U specimens.
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Figure 4.29: geometry of the double lap joints specimens a) in static and b) in dynamic.

In opposition of the double shear lap joint which are directly clamped in the grip of the
static/dynamic machine, the double U specimens need a special equipment. This special
equipment is composed of steel blocks on which the specimens are screwed and two steel
plates (in multiphase 800) from which the loading is carried out (Figure 4.30). As shown
in Figure 4.30, the link between the steel block and the steel plates is realized with only
one rotational axis. The advantage of this rotational axis is to limit the moment brings
to the specimen by the loading. To investigate the effect of strain rate on the failure
in assemblies two different loading rates are applied on the previous specimens. The
corresponding mean strain rate in the bonded joints are computed with equation 4.37
and are summarized in Table 4.3.

S:mean = (437)

h

where v is the nominal loading speed and L the length of the bonded joint in the loading
direction as shown in Figure 4.31.

Even if the strain rates in static are different for the tensile and shear loadings, this
difference is considered as negligible due to the low sensitivity of the adhesive on this
strain rate range.

by David MORIN



92 Chapter 4. Macroscopic finite element model

Steel plates

Steel block

Figure 4.30: presentation of the special equipment needed for the tensile tests.

NS L
1 )

>

Loading direction f

Figure 4.31: illustration of the length used for the strain rate calculation.

Nominal loading speed | Mean strain rate (in s7!)
Double U 1 mm.min™! be~?
Double U 48 mm.s™! 160
Double lap joint 1 mm.min™! 2e~3
Double lap joint 1.6 m.s~! 160

Table 4.3: Loading rate and corresponding strain rate.

4.4.3.2 Failure initiation identification and results

Before to present the results in terms of failure initiation criterion, the identification
protocol has to be described. The opening and sliding displacements at failure initiation
needed in the macroscopic model are identified using 2D Digital Image Correlation. An
illustration of measurement protocol is given in Figure 4.32a for the tensile tests and in
Figure 4.32b for the shear tests.

Even if the tensile and shear are supposed as pure tests, the counterpart of the opposite
displacements (i.e sliding in tension and opening in shear) are taken into account in the
measurements thanks to the D.I.C. technique.

As the detection of crack initiation is difficult in this configuration (i.e. small thickness
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Figure 4.32: illustration of measurement protocol for a) tensile tests and b) shear tests.

of joints and low pixel resolution) the opening and sliding displacements are computed
on 4 pictures in which the crack initiates. As Figure 4.33 shows a mean strain and its
standard deviation is then computed with the different data.
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Figure 4.33: illustration of initiation displacements computation.
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The results in terms of opening and sliding displacements for both tensile and shear tests
are presented in Figure 4.34.

¥
0,2 « Tensile dynamic
= . — Uncertainty for dynamic tensile
E = = Tensile static
E - Uncertainty for static tensile
£0.15- + Shear dynamic
= . — Uncertainty for dynamic shear |
s = - Shear static
£ = — Uncertainty for static shear
2
s 0.
2 L ]
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o . ;
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’ Ll i T P O O
0 0,05 0,25 0,3

0.1 015 0,
Sliding displacement (in mm)

Figure 4.34: results in terms of opening and sliding displacements for the different strain
rates.

In opposition of the tests on bulk specimens, the strain rate sensivity on the tensile results
is clearly visible. This un-expected finding can be explained by the triaxiality stress ratio
presents in the bonded joints. The Figure 4.35 shows the results of a Finite Element
simulation of the double U test. As shows in Figure 4.35a, the triaxiality stress ratio is
very heterogenous inside the bonded joint. The particular case of the edge of the bonded
joint which is plotted in Figure 4.35b, the triaxiality stress ratio is always greater than 0.5.
The experiments on bulk specimens have shown that the strain rate sensitivity decreases
with higher triaxiality stress ratio, this proves that results in tension for assemblies are
not strain rate sensitive due to the geometrical effect on the edge of the bonded joint.
As for the tensile tests, the results in terms of opening and sliding displacements for the
shear tests are very surprising due to the opposite tendancy observed in Figure 4.34. The
opening and sliding displacements seem to increase with the strain rate but whithout
informations on the behaviour and failure of the adhesive under dynamic shear loading
it’s not possible to conclude on this aspect. Even if this results are not yet explained, a
description of the heterogeneity of the triaxiality stress ratio in double lap joint tests is
given in Figure 4.36.

Experiments and models until failure of bonded joints for crashworthiness



4.4. Properties identification 95
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Figure 4.35: a) cutted view through the thickness of the bonded joint in tension and b)
evolution of the triaxiality stress ratio in function of the time.

As for the double U specimens, the triaxiality stress ratio is very heterogenous inside the
bonded joint (Figure 4.36a) and its evolution in function of time shown in Figure 4.36b
proves that its magnitude is never to 0. So as the triaxiality stress ratio is mainly greater
than 0.4 the geometrical effects should be dominant.

As the geometrical effects are suspected to be predominant, the final failure initiation
model is then identified on the static experimental data as shown in Figure 4.37. The
identification of the initiation criterion returns 9, equal to 103 s, and &; equal to 226 p,,.
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Triaxiality stress ratio n
07
0.6
04
0.3
0.2
0.1
0
-0.1
-0.2
0.4
-0.5
0.6
0.7
0,8
0,6
: 4] — Element n°1
s 1 — Element n°2
g 0,21 — Element n°3
@ — Element n°4
(] Element n°5
% 0 Element n°6
b /\/VVWMW
502 — Element nf8>T~">"
% — Element n°9
© — Element n°10
F.04-
106 == serees e s e RS N e )
-0,8+— : , , : .
0 0,0002 0,0004 0,0006 0,0008 0,001
Time (in s)
b)

Figure 4.36: a) cutted view through the thickness of the bonded joint in shear and b)
evolution of the triaxiality stress ratio in function of the time.

4.4.3.3 Crack propagation identification and results

The crack propagation is identified directly on the image sequence captured by the
CCD/CMOS captor. In these sequences, the visible crack tip is followed on the different
images as shown in Figure 4.38. Although the crack tip displacement is not straight in
the middle of the bonded joints only the projection of this displacement on the x axis (the
width of the bonded joint) is taken into account (Figure 4.39).
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Figure 4.37: identification of the failure initiation criterion.

Specimen with cracks

Figure 4.38: crack tip displacement identification.

Of course all these measurements are only valid if the crack tip is considered as straigth
as shown in Figure 4.40.

Due to the complexity of the identification of the crack tip displacement, these measure-
ments are only limited to the double U tests. As a consequence of this choice the crack
speed computed may be overestimate for the mode II/1II crack propagation.

The crack tip displacements identified on a selection of specimens are shown in Figure
4.41. These curves show high dispersive responses in terms of slope which translate differ-
ent crack propagation speed but also different crack propagation progress. For example
on the 1% crack of the specimen n°7. the crack displacement is quasi constant and could
be associated to elastic fracture mechanics. In opposite the major part of the studied
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Adherent

Adherent

Figure 4.39: illustration of the crack tip displacement measurement.

~— Real crack tip
— Idealized crack tip

S

Figure 4.40: idealization of the crack tip.

specimens show a discontinous crack propagation which is related to inelastic fracture
mechanics phenomena.

Experiments and models until failure of bonded joints for crashworthiness
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Figure 4.41: results in term of crack tip displacements.

From the curves presented in Figure 4.41 the crack propagation speeds are extracted by
realizing linear interpolation as shown in Figure 4.42. On each tests 3 crack propagation
speeds are identified following the previous principle.

54

-e- Experimental data
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Figure 4.42: crack propagation speed identification.

Due to the fact that the crack propagation speed is dependent of the loading speed of the
bonded joints (i.e. more faster is the test more faster is the crack propagation) the crack
propagation speed has to be identified in the function of the equivalent opening speed
(equations 4.34,4.36). Unfortunately this equivalent opening speed is also function of the
width of the bonded joints and the double U do not have the same width so a normative
variable has to be chosen. Finally, the normative variable chosen is the ratio between
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the equivalent opening speed and the width of the bonded joint. With this variable the
evolution of the crack propagation speed is then plotted in Figure 4.43.
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Figure 4.43: crack propagation speed in function of the normative variable.

By discarding the computed crack propagation speed which seem to be erroneous (greater
than 0.2 mm.s™ '), the ratio 7 (equation 4.33) is then equal to 213 for a bonded joints of
1 mm.

4.5 Conclusions

This chapter brings the complete description of the macroscopic approach used in this
thesis. This model is based on the time step formulation of a classical cohesive element.
In addition of the existing cohesive element of the litterature, this model brings the
possibility to represent the different behaviour in tension and compression in terms of
elasticity as well as the plasticity. It also provides a simplified visco-plasticity enhanced by
a damage model. The failure initiation is tackled by a criterion based on the opening and
sliding displacements which initiate a crack on an edge of the bonded joint. The element
elimination is tackled using an innovative technique which represent the elimination as a
crack propagation through the element. An experimental technique to propagate a crack
is also present but is very limited for the moment due to some problems linked to the
current finite element software. The behaviour properties of this model are identified on
the previous bulk specimens (Chapter 2) but with a simplified analysis. Finally the failure
initiation and crack propagation properties are identified on assemblies using 2D Digital
Image Correlation technique.
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4.6 Models parameters summary
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Figure 4.44: summary of macroscopic model parameters.
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The aim of this chapter is to present numerical validations of the mesoscopic and
macroscopic finite element models. These validations are carried out on three different
experimental tests. These experimental tests are based on gradually complex loadings n
order to check the accuracy of the proposed models on different levels of difficulty. From
these results, an adapted modeling strategy is then proposed.
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5.1 Presentation of the different structures

To provide a pertinent evaluation of the mesoscopic and macroscopic models the corre-
lation between experimental and numerical responses are realized for different loadings.
The accuracy of both models is checked with a high strain rate double U test which brings
a mode I load on the bonded joint (Figure 5.1a). An innovative test called dynamic flexure
test is designed to bring a mode I/II load on the specimen at high strain rates (Figure
5.1b). The combination of mode I/1I and mode III is given by a dynamic axial crushing
of crashboxes (Figure 5.1¢). These crashboxes are realized with different assembly tech-
niques as mentionnned in Chapter 1. To keep a continuity between the identification of
the macroscopic failure criterion, the same grade and thickness of steel is chosen, so a DP
600 with a thickness of 1.5 mm.

V=7 m/s

High strain rate double U test (mode I)

lV =16 m/s

-
e S

Dynamic flexure (mode II / mode I)

V =16 m/s d -E
Mass = 350 Kg

Dynamic axial crushing (mode I / mode II / mode I1I)

Figure 5.1: description of experiments and load complexity.

An analysis of the ratio between the quality of the results and the computation times is
also given for each load complexity and a modeling strategy of bonded structures is finally
given.

Experiments and models until failure of bonded joints for crashworthiness
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5.2 Prerequesite to the finite element modeling of
bonded structures

5.2.1 Mesh size and link between steel and adhesive

As explained in Chapter 3, the steel adherents are modeled with shell elements. These
shell elements are chosen as reduced integration and the default option with ABAQUS
explicit is used for the thickness integration (5 points and the Simpson rule). The mesh
size of the steel adherents is adapted to the experiments and size of the elements are
summarized in table 5.1.

Experiment Element size (mm)
Double U 0.5
Dynamic flexure 0.5
Dynamic crushing 5

Table 5.1: summarize of the shell element sizes.

In addition on the steel mesh size, some informations have to be given on the mesh size of
the adhesive. As for the steel shells, the size of the volumic or macroscopic elements are
adapted to the experiments (Table 5.2). As the opposite of the shell elements which are
chosen as square, the volumic or macroscopic elements are not purely cubic. This choice
is realized only to limit the number of elements in the F-E simulations.

Experiment 1% side (mm) | 2™ side (mm) | thickness (in mm)
Double U 0.5 0.5 0.3
Dynamic flexure (1 element) 0.5 0.5 0.3
Dynamic flexure (3 elements) 0.5 0.5 0.1
Dynamic crushing (1 element) 5 5 0.3
Dynamic crushing (3 elements) 5 5 0.1

Table 5.2: summarize of the adhesive element sizes.

As mentionned in Chapter 3, the steel adherents are modeled with the neutral axis of
the shell elements so an offset between this axis and top surface of the adhesive element
is made. This offset is made for the mesoscopic model with a tie constraint available
in ABAQUS explicit which keep a constant distance between the shell and the volumic
element (Figure 5.2). For the macroscopic model, the use of user element in ABAQUS
does not allow the tie constraint so another technique is required. To numerically 'bond’
the macroscopic element to a shell element, an artificial link between coincident nodes
is realized by coupling the translationnal degrees of freedom of the shell nodes to the
volumic nodes (Figure 5.2).
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Master surface Master node

lave node

Slave surface

Figure 5.2: numerical link between steel and adhesive.

5.2.2 Steel material properties

For all the computations, the steel material (DP 600) is considered as visco-plastic with
true stress / true plastic strain curves given on a tabulated way (Figure 5.3). Its plasticity
is computed following the classical von Mises plasticity (./, plasticity) theory.

900
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2700—
=
£ — 0.0008 s
S — '1
¥ 00 0.8s
o — 365
& — 67 s!
S =150¢
g 500 — 520 s
970 s!
400}
300-'"I"‘l"’|"‘I“'I"‘]"'I"'l
0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16

True plastic strain

Figure 5.3: true behaviour laws for the DP 600 steel.
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5.2.3 Failure criterion of adhesive in mesoscopic model

As for the mesoscopic model, a mesh sensitivity through the thickness of the bonded joint
is done. An evaluation of the failure model parameters on the failure criterion have to be
made. Indeed, it is a well-known fact that the failure strain is dependent on the length of
the element in F-E simulations. By using D.I.C. techniques to identify the failure strains,
this problem is also present. The step size (distance between two correlation zones) of
D.I1.C. is then equivalent to the finite element length. An illustration of the problem linked

to the step size is given in (Figure 5.4).

0,16
1 — step 3 px
0,157 — step 4 px
— step 5 px
20,14 — step 6 px
— step 7 px
— step 8 px
0,13+ — step 10 px
] — step 12 px

Longitudinal strain ¢
e o £
- -
e i

o
-

0,094

0,08 T T T T T
2 25 3

1 1,5
Position in the notch (in mm)

Figure 5.4: effect of step size on the failure strain computation in D.1.C.

As the failure criterion identified in Chapter 2 is based on 0.3 mm step size, a ratio has
to be applied on it so as to be valid with smaller elements. This ratio is determined by
identifying the effect of the step size on an experimental strain distribution and is applied
on the ay function of the failure criterion (2.31) (Figure 5.5). The strain rate dependency
described by the by function is by definition not affected by the step size. Finally different
parameters are found and have to be used in adequation of the mesh size.

1

* Experimental data for a 0.3 mm step |

~— identified model for a 0.3 mm mesh |
0.8 = Experimental data for a 0.1 mm step |
£ — Identified model for a 0.1 mm mesh |
g + Experimental data for a 0.06 mm step
1] — Identified model for a 0.06 mm mesh
4
20,6
&
Y
[}
2
£
0,2
P (—_— " RS ) SSCHS SRR O 98 0 SN
-0.3 -0,2 -0.1 0.1 0.2 0.3 0.4

3 0 B
Triaxiality stress ratio

Figure 5.5: evolution of the a; function in function of the mesh size.
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5.3 High strain rate double U test

5.3.1 Description of experiments

The mode I test is achieved on the same double U geometries than in Chapter 4. The
main difference is focused on the loading speed, which is closed to 7 m.s~!. To obtain
this loading speed a set of direct tension Hopkinson bars is used (Figure 5.6). These
Hopkinson bars are constitued of two steels bars loaded on the end of the input bar by
an tubular impactor made in aluminum. The force and displacements measurements are

achieved through the strain gages bridges placed on both input and output bars.

Sliding impactor
N

e Input bar Specimen Output bar
1m s
W, pd P
— =a )
- 5.8m = 4m =

Hopkinson bars

Specimen

Figure 5.6: presentation of the Hopkinson bars.

5.3.2 Description of numerical simulations

Due to the symmetries of the system, only a quarter of the specimen is modeled (Figure
5.7). On this model, the lower part is considered as fully fixed i.e. all degrees of freedom
are equal to zero. The upper part of the model is loaded by a speed ramp (Figure 5.8).
This ramp is identified on the difference between input and output bars speed.

Experiments and models until failure of bonded joints for crashworthiness
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Steel sheets

t Loading
Symmetry

——— Encastre

Adhesive

Figure 5.7: FE model of the double U test.
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Figure 5.8: identification of the speed ramp.

5.3.3 Correlation between numerical and experimental results

To correlate the numerical results to the experimental ones, only the force displacement
curves are used due to the complex specimens geometries. A major difference is observed
between the experimental and numerical curves (Figure 5.9). This difference is not a
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numerical error but comes from the experiments. Indeed, a geometrical discontinuity
is present between the specimen and the input and output bars (Figure 5.10). These
geometrical discontinuities imply a lower force rise in the specimen.

le+04 | — Specimen n°1 ;
| | — Specimen n°2 %
| — Specimen n°3 f
{ — Specimen n°4 ‘
| | — Mesoscopic model |
8 000 — Macroscopic model
Z 6000 \
£ ]
o
5
w 4000+
2 000+ I
0 - T Y g ! ' ‘
0 0,0005 0,0015 0,002

0,00
Displacement (in m)

Figure 5.9: experimental and numerical force displacement curves.

Input bar Output bar

Interfaces

Figure 5.10: discontinuities problem between specimen and Hopkinson bars.

By skipping this force rise problem, the numerical and experimental curves show a good
correlation (Figure 5.11). For both macro and mesoscopic models, the average force
during the test is well described. In addition, the failure of the specimen appears to be
well predicted on the global displacemen value.
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Figure 5.11: experimental and numerical curves for force displacement.

5.4 Dynamic flexure test

5.4.1 Description of experiments

The innovative dynamic flexure test is realized on a ballistic tube (Figure 5.12). The
innovation realized here is to use a perforation device for a dynamic flexure test. This
flexure test is realized on a normative single-lap joint specimen originally designed to
evaluate the shear properties of bonded joints. Specimens which are presented in Figure
5.13, are screwed directly on the steel tube (Figure 5.12). Then the measurement of the
force is realized using the elastic wave propagation in the tube. This measurement is
achieved using full strain gage brigdes, here two bridges are used so as to obtain a double
measurement (Figure 5.12). The flexure loading is obtained by an impactor launched
through a guide by a comprimed air device. The displacement of this impactor is measured
by an electro-optical extensometer (Figure 5.12).
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Guide of the impactor Comprimed air tank
2

Specimen’s locking system _
Steel tube -

(length 3m

Specimen (length 130 mm)

13 1nrnI

Low speed = 16 m/S
130 mm High speed = 70 m/s

Figure 5.12: presentation of the ballistic device.
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Figure 5.13: geometries of the specimen.

5.4.2 Description of numerical simulations

The proposed model for the dynamic flexure test is described in Figure 5.14. The boundary
conditions of the specimen are simplified to a clamped configuration on the internal radius
of the tube (red lines). Here again. a symmetry is used to reduce the time of computation
(green lines). The impactor is represented by an analytical surface considered as rigid.
This impactor is moved by an imposed displacement (measured experimentally) and a
mass of 72.65 g is added to represent its real weight. Here again the tangential friction
coeflicient is set to 0.3 by a penalty method.

Ezperiments and models until failure of bonded joints for crashworthiness
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Adhesive

Encastre
Symmestry Impactor

Steel sheets

Figure 5.14: dynamic flexure simulation setup.

5.4.3 Correlation between numerical and experimental results

As results on these tests, only the force displacement can be used to correlate the numerical
and experimental responses. The numerical forces are computed on the clamped lines of
the specimen and a factor 2 is applied to represent the total load of the real specimen.
The experimental results in terms of force are very noisy (Figure 5.15) so the correlation
is realized on the chosen typical sample. This noisy response is directly related to the
geometry of the measurement tube. Indeed, the specimen is clamped to the tube through
an holed steel plate which is welded to. All this geometries discontinuities create wave
reflexion and then noise on the signal measured by the strain gages.
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Figure 5.15: experimental forces measured on the tube.

So as to match to the chosen typical sample, its displacement is imposed to the impactor.
In order to avoid the numerical problems linked to the explicit schema, a polynomial
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approximation is realized on this displacement (Figure 5.16).

1.4-

— Specimen n°3 P
- Polynomial filter =

1,2
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0 0,0001 0,0002 0,003 0,004  0,0005
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Figure 5.16: filtering of the displacement of the impactor.

For both macro and mesoscopic models, a good correlation is found at the begin of the
test (up to 60 ps) (Figure 5.17). After that only the mesoscopic model is able to predict
the good strength of the specimen. The effect of the mesh refinement is detailed in Figure
5.18 in which the difference between an one element through thickness and a 3 elements
through thickness is given. From these curves, the effect of the mesh refinement allows a
better description of the global response but with an increase of the computation time as
it will be discussed later in this paragraph.

8.

Typical sample
Mesoscopic model
— Macroscopic model

Force (in kN)

«2 -

0 0,0001 0,0002 0,0003 0,0004 0,0005
Time (in s)

Figure 5.17: comparison between macro and mesoscopic models on the force-time curve
of the typical sample.
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Figure 5.18: effect of the mesh refinement through thickness.

A qualitative study on the failure is also realized on the refined mesh. It appears that
the numerical crack initiation is well predicted in terms of geographical position in the
bonded joint but also into the thickness (Figure 5.19 , 5.20). The failure initiation into the
thickness is correlated with the experimental failure facies which are cohesive superficials.

Failure initiation

Figure 5.19: numerical crack initiation on the dynamic flexure test.
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Initial condition

s S L

Crack initiation

Crack propagation

Figure 5.20: experimental crack initiation on the dynamic flexure test.

In addition to the differences highlighted on the previous figures (Figures ?7). it also
interesting to compare the computation time between these calculations. Of course, the
use of a refined mesh into the thickness brings a better correlation but an increase of 300
% of the computation time is needed compared to 1 element mesh or the macroscopic
model (Figure 5.21). The gain in term of time when using the macroscopic model is very
small (a few seconds) in face of the loss of quality in the response.

700+
= Macroscopic model
= Mesoscopic model (1 element)
= Mesoscopic model (3 elements)
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5 6007
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U150+
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F-E model

Figure 5.21: summary of the computation times for the different models.
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5.5 Dynamic axial crushing test

5.5.1 Description of experiments

The dynamic axial crushing tests are realized at ARCELORMITTAL Maiziéres les Metz
on a middle capacity catapult (Figure 5.22). To obtain a dynamic axial crushing loading,

' on a crashbox (Figure 5.22). This

a mass impactor is launched on a rail at 16 m.s™
crashbox is fixed on a rigid wall through the force acquisition system. This system is
composed of 4 piezo-electric cells placed in parrallel for a total capacity of 1200 kN. The

displacement of the impactor is measured with a laser captor placed on the rigid wall.

Comprimed air tank  Impactor (mass 350 Kg) Crashbox’s locking system
speed 16 m/s

Figure 5.22: presentation of the dynamic axial crushing test.

Three kinds of crashboxes are realized in ARCELORMITTAL Montataire with different

combinations of assemblies:
e 10 spotwelds
e 10 spotwelds + bonding
e 5 spotwelds + bonding
e bonding.

Except for the only bonded structures which are realized with a continuum bond line,
the spotwelded and bonded crashboxes are realized with a discontinous bond line (Figure
5.23). This discontinous bond line is chosen so as to avoid expulsion of matter during
the formation of the spotweld. The spotweld of the different crashbox configuration are
realized on a Langepin spotweld machine at defined places as shown in Figure 5.24.
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Figure 5.24: spotweld machine and places for spotweld.

5.5.2 Description of numerical simulations

The dynamic axial crushing tests are simulated as shown in Figure 5.25. Only an half
of the crashbox is simulated using a symmetry (green line), in terms of clamping a 15
mm length region is clamped (red lines) so as to represent the real conditions. The mass
impactor is represented by an analytical surface considered as rigid. This impactor is
launched with an initial velocity of 16 m.s™! and a mass of 175 kg is added to represent its
real weight. Here again the tangential friction coefficient is set to 0.3 by a penalty method.
As no failure is observed for the different spotweld,s a simple tie between the upper and
lower shell steel nodes is realized (Figure 5.26). The simulations of the spotwelded and
bonded specimens are realized with only one element through the thickness except for the
only bonded specimens on which a sensibility of the mesh refinement is performed.
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Impactor

Steel sheets

Encastre
Symmestry

Adhesive

Figure 5.25: dynamic axial crushing simulation setup.

Figure 5.26: spotweld representation.

5.5.3 Correlation between numerical and experimental results

In terms of results, the dissipated energy is chosen observable. The difference between
experimental and numerical responses are shown in Figure 5.27 for the only bonded spec-
imens.

The main observation is that for both macro and mesoscopic models, the dissipated
energy is overestimated at the begining of the test. Regarding to the mesoscopic model
which delivers a higher dissipated energy as the macroscopic one, the final value of this
energy is higher and better placed in the experimental responses. In terms of deformed
shapes, a good correlation is found between the two models and the experiments (Figure
5.28). In addition to this remark, the mesoscopic model predicts a better shape than the
macroscopic one.
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Figure 5.27: dissipated energy for both numerical models and experiments.

Mesoscopic Macroscopic

Figure 5.28: deformed shapes for both numerical models and experiments.

A study of the influence on the mesh refinement in the thickness is realized (Figure 5.29)
for the typical one element through thickness and a 3 elements mesh. This influence
is very limited and the quality of the response is slighty modified compare to the time
computation which will be discussed later in this paragraph.

In addition, a study on the failure is also realized between the 1 and 3 elements through
the thickness meshes. Although the failure facies on the only bonded crashboxes are
dispersives (mixed between cohesive, superficial cohesive and adhesive), the mesoscopic
model is able to reproduce this dispersion but the representation is limited to the use of
classical finite elements methods.

A study is also achieved on the crack propagation between the 1 and 3 elements through
the thickness meshes. The study of the crack propagation is limited to the formation of
the first local bulking of the specimen. As shown in Figure 5.32, the difference in crack
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Figure 5.29: deformed shapes for both numerical models and experiments.

Figure 5.30: experimental failure facies of only bonded crashboxes.

propagation between the two meshes is limited by the size of the mesh. With a finer
mesh, the crack is propagate on a larger surface than a coarser one.

As for the only bonded specimens, the numerical responses of the 5 spotwelds and bonding
specimens show a good correlation with the experimental results (Figure 5.33). Here
again the dissipated energy is overestimated at the begining of the test but the difference
between the meso and the macroscopic models is negligeable for this case.

For the deformed shapes shown in Figure 5.34, another good correlation is observed
between numerical and experimental shapes. It can be highlighted that the macroscopic
model shows more instabililty in face of the mesoscopic one.

As for the previous geometries, a good correlation between the experimental and numerical
dissipated energies is found for the 10 spotwelds and bonding specimens (Figure 5.35).
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Figure 5.32: numerical crack propagation.

This energy is always overestimated at the begining of the test but in a lower way for
this time. Moreover the mesopic model provides a very good correlation until 100 mun of
crushing than the macroscopic one is well fitted until 60 mm of erushing. For the deformed
shapes a good correlation is always found (Figure 5.36) but the mesoscopic gives the best
shape.

To conclude on these experiments and related simulations, a comparison between the
numerical and the mean experimental dissipated energies is proposed in Figure 5.37. For
all the crashbox configurations, the responses of the macro and the mesoscopic models
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Figure 5.33: dissipated energy for both numerical models and experiments.
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Figure 5.34: deformed shapes for both numerical models and experiments.

are always in the dispersion of the experiments. In addition, the mesoscopic response is
always the nearest response of the mean experimental energy.

A summary of the computation times for the different crashbox configurations and finite
element models used is proposed in Figure 5.38. It can be highlighted than the light
difference between the macro and the mesoscopic models responses is directly paid by a
high increase of the computation time (always greater than 1000 % ). The impact of the
mesh refinement on the computation is also described in Figure 5.39. The use of 3 elements
inside the thickness of the bonded joints lead to a high increase of the computation ( =~
76 hours) for no visible effects on the response of the crashbox. It has to be noticed that
the study with 5 elements into the thickness is not incorporated in the results due to the
very high computation time (estimated to 60 days on 24 processors). All the previous
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Figure 5.35: dissipated energy for both numerical models and experiments.

Mesoscopic Macroscopic

Figure 5.36: deformed shapes for both numerical models and experiments.

quantities have to be place in face of the computation time of only spotwelded crashbox
which is around 4 minutes. This last point proves that the macroscopic model lightly
impacts the computation time and that adhesive can be taken into account in larger
structures.
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5.6 Proposition of modeling strategy

With the previous correlations between the experimental and numerical responses but
also their respectives computation times, a detailled modeling strategy is proposed. From
the previous paragraph three observations can be made:

e the accuracy is limited for the macroscopic model when the deformation is mainly
control by the adhesive and not the adherent,

e 1o large differences are observed on global responses for large F-E models by using
meso or macroscopic models,

by David MORIN



126 Chapter 5. Modeling of bonded structures

1500 1

1450 ‘ m ] element through thickness ‘
= 3 elements through thickness |

m 5 elements through thickness |

-
»H
o
o

1350

13007

-
w
o

el

Computation time (in hr)

-
o
o

76 hr 40

w
o

1 hr 20

Mesh refinement through the thickness

=60 days

Figure 5.39: influence of mesh refinenement on the computation times.

e the computation time is highly impacted in the case of mesoscopic model for large
structures but stay as the same level as the macroscopic one for small structures.

Since no effect of adhesive modeling is shown with the macroscopic model on large F-E
models computation times, it is now possible to take into account the bonded joints into

a full car model.

-1 » Time (in s)

Figure 5.40: frontal impact of a front car block.

Then in a complex model, the bonded joints can be modeled with the macroscopic model
because the response in terms of global deceleration will be mainly led by the steel. In
addition of these calculations, a detailled model can be used with the mesoscopic approach
so as to study the local behaviour until failure of a reduced region. An sample of strategy
is given for design of front car block (Figure 5.40) for a frontal impact at 56 km/h.
For instance, the link between the cup shock and the crashbox (Figure 5.33) which is
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traditionnally realized with a weld line and/or spotwelds could be a place for structural
bonding.

T =
0 0,03 0.06 0.09 ime|(10:8)

Figure 5.41: detailled view of the cup shock - crashbox link.

This local study can be easily performed with the mesoscopic model due to its light impact
on the computation time of small F-E models. A first approach with only one element
through the thickness of the bonded joints could be attractive but a better response could
be obtained using 3 elements in the thickness.

Finally, this modeling strategy allows to model the bonded joints at different scales so as
to limit the computation times for large structures and to use all the benefits of a fine
prediction on small ones.
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CHAPTER 6
Conclusions & perspectives

Nowadays structural bonding is widely used in transportation industry. In the particular
context of automotive industry, structural bonding is of high interest to reach the
safe and lightweight goals of constructor. Even if the use of structural bonding is still
increasing between new and old car models its use is always limited to luxuous ones. This
limitations are mainly due to the misknowledge of the constitutive material of the joint
and also the difficulty to modeled this joint whithout a huge increase of the computation
time.

Concerning crashworthiness applications, these adhesives also named crash-stable
adhesives, are based on a classical epoxy matrix toughened by addition of polymer
nodules and theirs properties are then highly modified. These properties composed by a
visco-elastic phase following by a visco-plasticity and damage behaviour are very similar
to the behaviour of polymer materials. As for the polymers, a difference between the
tensile and compressive behaviour is present and classical behaviour models can not
be used to predict the local behaviour of adhesives. In terms of failure models, the
crash-stable adhesives suffers of a lack detailled models in the literature and are generally
described by simple criteria.

The second main limitation is linked to the computations time. Indeed the crashworthi-
ness modelings are generally realized with an explicit integration scheme which requires
very small time step for small elements. As the thicknesses of bonded joints are generally
equal to 0.3 mm in automotive structures and the typical length of other elements is
around 5 mm, the time step used for the algorithm is then highly reduced. Moreover the
stress heterogeneities through the thickness can only be predict with a minimum of 3
elements and then the time step is therfore more reduced.

These thesis works are focused on the finite element modeling of bonded structures for
crashworthiness. As a fine prediction of the behaviour and failure of bonded joints and
non-time consuming model are not compatible, the final goal of these works is to provide
a modeling strategy of bonded structures.

As a first stage, the behaviour and failure of the chosen crash-stable adhesive (BETA-
MATE 1496VT™™) is studied through experiments on bulk specimens. These kinds of tests
are chosen to avoid classical problems of stress heterogeneties which are generally linked
to assemblies tests. These tests are perfomed under a wide range of strain rates from
0.01 s7! to 5000 s~! and for different kinds of loadings. These loadings are composed
by tensile, notched tensile, compression and shear tests. By realizing classical tensile
tests and notched tensile tests, the effect of the triaxiality stress ratio on the damage
evolution and also the failure is studied. With the compression tests, it is highlighted
that the difference between compressive and tensile behaviour is not only limited to the
yield stress but also extended to the behaviour law. The shear tests are used to check the
isotropic behaviour of the considered adhesive and to quantify the failure phenomenon.
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These experiments are analysed using different techniques including both contact and
non-contact methods. The elasticity measurements are assumed by classical strain
gages for both tensile and shear specimens and with an electro-optical extensometer for
the compression tests. Both 2D and 3D digital image correlation techniques are used
to investigate the plasticity and failure of the adhesive. For the determination of the
tensile behaviour laws at constant strain rate, the SEE method is used. From all these
measurements, mathematical models are identified to represent the physical properties
of the adhesive.

The second step presented in these works is focused on the definition of the mesoscopic
model. This model is implemented into the finite element software ABAQUS explicit
through a VUMAT (Vectorized User MATerial) subroutine. A fine description of the
adhesive properties is realized using the mesoscopic approach but a high impact on the
time step is made. This model is able to reproduce all the behaviour and failure models
identified in the previous part of the thesis. The non-isochoric behaviour of the adhesive
is taken into account with a non-associative plastic flow. This non-associative plastic
flow is limited to the tensile contribution of the behaviour due to the fact that no damage
phenomena can occur in both compression and shear. A damage model also previously
identified is used, this model is able to predict the dependency of the damage evolution
on the triaxiality stress ratio. The failure model is based on an equivalent failure strain
which evolves with the strain rate and the triaxiality stress ratio.

These previous works are followed by the macroscopic model development. The macro-
scopic approach allows to take into account the bonded joints whithout effect on the
time step but the behaviour and failure of the adhesive are simplified. The macroscopic
model is based on the spring element time step used for the classical interface and
cohesive elements. Behaviour and failure computations are based on 3 independant
springs representing the tension/compression and the 2 in plane-shear components.
This approach is implemented in ABAQUS explicit through a VUEL (Vectorized User
ELement) subroutine. This part of the thesis explains all the requirements which are
involved to develop a macroscopic element. These steps are described from the mass ma-
trix computation to the nodal forces update through the local basis, opening and sliding
displacements, strains and stresses computations. The identification of the macroscopic
behaviour are realized on the same experimental database than the mesoscopic model but
with a simplified analysis. The failure properties are them extracted from special purpose
tests. These tests based on tensile and shear loadings are achieved with double U and
double shear lap joints specimens respectively. The analysis of the opening and sliding
displacement which lead to failure, is realized with digital image correlation technique.
Finally, the modeling strategy is proposed based on the analysis of different validation
tests. Two different load complexity tests are chosen to correlate the numerical responses.
For the dynamic flexure tests, it is highlighted that only the mesoscopic model delivers
a good description of the force response during all the test. It also appears that the
compututation time between the macro and the mesoscopic models differs from a few
seconds only. The influence of the mesh sensitivity through the thickness is also realized
with this load case. The quality of the response is then improved with the thickness mesh
refinenement as expected. The simulations of dynamic axial crushing tests have shown
a good correlation with the experiments for the both approachs. This fact is due to the
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global response of the crashbox which is mainly dominated by the steel sheets. Even
if the quality of the respounse is lightly affected by the model used for the adhesive the
computation is well impacted. As an example the 10 spotwelds crashbox shows a time
computation of 4 minutes for the only spotwelded configuration, 4 minutes and 16 seconds
for spotwelded/bonding configuration with the macroscopic approach and more than 1
hour for the mesoscopic approach. From the quality of these numerical/ experimental
correlations and their computation times, a modeling strategy is then proposed and an
example is given on the frontal impact of a front car block. This strategy postulates
that the bonded joints can be included inside a huge model whithout influencing the
computation time but local study of connector behaviour and failure can be realized with
a fine mesoscopic approach.

Although the proposed models of this thesis show a good correlation with experi-
mental data, many improvements can be bring to these models. These improvements are
focused the discarded points of these works. In terms of experimental characterization
of the bulk adhesive, the elastic tensile properties as well as the plastic and failure ones
should be investigate at higher strain rates with a different setup of Hopkinson bars. In
addition, the shear properties have to be investigate under a wide range of strain rates,
for that the losipescu test used in this thesis is not suitable and other tests are required.
A new specimen is designed for polymeric materials (Figure 6.1). this specimen allows
the characterization of the shear behaviour failure from quasi-static to intermediate
strain rates (around 100 s™!).

Figure 6.1: illustration of new shear specimens for polymeric materials.

The damage model used in this thesis needs to be improved by adding a void evolution law.
This law is experimentally identified by achieving in-situ tensile in a micro-tomograph.
With this device X-ray picture of the instantaneous resistant plane of a reduced specimen
can be obtained and the voids are directly located.

Another way could lead to the study of thermal effects on the behaviour and failure of
adhesive. Indeed during high strain rate loading and especially in crashworthiness events,
the temperature can rapidly increase. So the study of the self heating of the adhesive
and its behaviour and failure under high temperatures have to be investigated to take
a step forward. In terms of failure criterion, the experimental database of this thesis
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should be extended in terms triaxiality stress ratios so as to allow the development of a
better mathematical model. This extension could be realized by achieving tests on Arcan
specimens but also tensile specimens with different notch radius and some biaxial tensile
specimens (Figure 6.2).

&t
A

Figure 6.2: illustration of possible extensions of failure criterion.

Many improvements can also be made on the macroscopic finite element. Instead of three
independant springs an equivalent formulation could be interesting. This equivalent for-
mulation will allow to use a real vield surface in which a hydrostatic pressure dependency
can be described. The plasticity computation of this element can also be improved by
an iterative formulation with a non-associative approach. Here again the damage model
could also be improved using the same or a simplified version of the mesoscopic damage
model. The failure properties identification of this element is also a point of improvement.
Although the strain rate sensitivity seems to be negligeable in bonded assemblies due to
the triaxiality stress ratio, high strain rate testing on Hopkinson bars could give interest-
ing informations. For that new specimens and Hopkinson bars are designed (Figure 6.3)
so as to achieve tensile, shear and mixed loadings on bonded joints.

Shear Mixed loading Tensile
i B BB

Sliding impactor

\ Input bar Specimen Output bar
1lm
-—
o — g .
< T > - T >

Figure 6.3: new specimens and Hopkinson bars device for the high strain rate testing of
bonded joints.
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To conclude these perspectives, a last model could be develop so as to realize a fine
prediction of the behaviour and failure of the adhesive with a small impact on the time
computation. This model could be based on a macro element in which a sub calculation
with a fine mesh and the mesoscopic model (Figure 6.4) will be used.

Figure 6.4: new macro element.
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