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CHAPTER 1 

Introduction 

Bonding and precisely structural bonding is an assembling technique used by 1an since 
the rise of time. Structural has been used in varions sectors during t his t ime with for 
example t he used of natural adhesives for the weapon of prehistoric men . With the 
emergence of t ransportation industries in the xxth century, structural bonding has known 
a growing interest from both industrial and research actors. Indeed with the current goals 
of safe and lightweight vehicles of the poli tics and the transporta tion industry, structural 
bonding is in fact at the rise of its use. 
In the particular context of automotive industry, the use of structural bonding increases 
each year as shown in Figure 1.1. Between each current and old or comparison models 
presented in Figure 1.1 the lengths of bonded joints are al ways increased of more 100<Y< . 
In addition to these car models, structural bonding is also present with more than 100 
meters in some luxuous models like 1ercedes class S, BMW 7, Lotus ellipse and so on. 

89.7 
- Current mode! 

- Old/comparison mode! 

21.1 

0 0.3 

Mercedes class C Audi a5 Volvo XC60 Volvo V70 Ope! lnsiginia 

Figure 1.1 : evolution of structural bonding use in some car models 

The question we can ask now is: 

" Why structural bonding is so interesting for automotive industry ? " 

Of course the classical advantages of bonding are of interest like the possibility to join 
dissimilar materials (like pol ymer on metals .. . ) and the stress concentration reduction 
in classical assemblies like sp ot-welding, riveting or climbing but new advantages have 
appeared with the new generation adhesive. 
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Now structural bonding is used to improve the durability by overcoming fatigue problems 
and improving long term durability. The acoustic of car structures is also improved by 
increasing the stiffness of car body with for example (Table 1.1) between the old and 
current model of Audi A6 in which an increase of~ 240 % of the length of the bonded 
joints is present. 

Increase (in % ) 
Bending stiffness 34 

Torsionnal stiffness 20 

Table 1.1: increase of acoustic between the old and new Au di A6 

The last demains in which structural bonding is used is the safety and the cost reduction of 
car structures production. lndeed the safety is improved by enabling the use of Advanced 
High Strength Steel (AHSS) and increasing the energy managment capabilities of car 
body. The cost reduction is enabled by giving the possibility to reduce the number of 
spotwelds of a car body for an equivalent safety level. 
Therefore this thesis is focused on the following aspects: 

• the safety with the increase of energy managment capabilities of car structures, 

• the cost reduction with the reduction of number of spotwelds, 

they have been validated on dynamic axial crushing tests of crashboxes (16 m.s-1
) 

although these arguments are widely used by adhesive producers. 

These tests have been performed at ARCELORMITTAL Maizières-les-Metz, the 
full description of the experimental set up will be given in Chapter 5. Three kinds 
of crashbox configurations have been analysed (Figure 1.2) to study the effect of 
structural bonding on the safety and cost reduction. The steel grades and thicknesses 
are summarized in Figure 1. 2. 

Steel grade Thickness (in mm) 
Bonded + Bonded + DP 600 1.5 

10 spotwelds 10 spotwelds 5 spotwelds 
DP 1000 2 

TRIP 800 1.5 
a) b) c) 

Figure 1.2: crashbox configurations a) 10 spotwelds, b) 10 spotweld + bonding and c) 5 
spotwelds + bonding and thicknesses for the corresponding steel grade. 

Experiments and models until failure of bonded joints for cmshworthiness 
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As showu in Figure 1.3, for all the steel grades an increase in the dissipated energy is 
observed between the 10 spotwelds and the 10 spotwelds + bonding specimens (at least 
7% for the DPlOOO and a maxima of 14 % for the DP600). It could be notice too that the 
sarne dissipated energy is observed between the 10 spotwelds and 5 spotwelds + bonding 
specimens for all the steel grades. These observations confirm the commercial argumeuts 
of the adhesive producers and justify the interest of this thesis. 

3e+04 

2.5e+04 

! 2e+04 

f .. 
c: 
• I,5e+04 ., 
i : 
i3 le+04 

5 000 

- DP600 

- TRIP800 

- DP 1000 

- 10 spotwelds 

10 spotwelds + bonding 

- 5 spotwelds + bonding 

Figure 1.3: evolution of dissipated energy in function of the crashbox configuration. 

For all these applications of structural bonding in automotive structures (Figure 1.4) 
different adhesive are produced by chemical industries: 

• anaerobies , 

• epoxies, 

• reactive acrylics, 

• polyurethanes, 

• special formulation of cyanoacrylates. 

Even if structural bonding has appeared in automotive design a few years ago , its use 
is only limited to luxuous models (more than 100 rn in a Mercedes class S in face of 
less tha.n 10 rn in a Renau lt Laguna). This limit is mainly due to the the misknowledge 
of the behaviour of the adhesive in details. Then the bonded joints are not taken into 
account in the finite element simulations of the automotive structures. The result of this 
limitation is that the bonded joints are used for the moment only to increase the classical 
security factor used in mechanical design . Even if the cost of bonding is lower than the 
cast of the spotwelding technique, its use is limited to luxuous cars. So the next step to 
obtain an optimal use of structural bonding and its implementation in ali kinds of cars 
is to realize finite element simulations and optimization. 

by David MORIN 



4 Chapter 1. Introduction 

Figure 1.4: possible places of struct ural bonding m t ransportation structures (yellow 
lin es) . 

So as to present t he current scient ific lockings due to the fini te element modeling 
of bonded structures we have to take place in the part icula r context of this t hesis, the 
crashworthiness propert ies of structural adhesives. 
The fi rst limit in t he modeling of crashwort hiness of bonded joints is due to t he special 
purpose adhesive developped for this kinds of applications. A new generation adhesive 
has been developped by chemical industries and is defined as a crash-stable adhesive. 
This adhesive is based on an epoxy matrix (Figure 1.5) which toughened by addit ion of 
polymer nodules (Figure 1.6 a). In this ep oxy matrix some minerais compounds are also 
added (Figure 1.6 b) so a.s to opt imize the reticulation process of this kind of adhesive. 

Figure 1.5: formulation of DGEBA epoxyde used in crash-stable adhesives. 

a) b) 

Figure 1.6: a ) polymer nodules and b) mineral compounds. 

The addition of polymer nodules confers to t he classical epoxy ma.trix which has a brittle 
behaviour , mecha.nical propert ies \;\,rhich are nea.r those of polymer materia.ls: 

• visco-elasticity, 

Exper·iments and models until fa ilure of bonded joints fo r cm shwoTthiness 
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• yield difference in tension and compression , 

• damage evolut ion during plasticity, 

• visco-plas ticity. 

These propert ies are very difficult to ident ify on classical tests which are widely used 
in the literature [1] [2] 131 141 151 . These tests suffer of a high stress heterogeneity 
inside the bonded joint but it also difficult to determine the failure initiation and the 
combination of stresses and strains which are leading to. Ali these aspects of experimental 
characterization will be developped in Chapter 2. Ftom a numerical point of view these 
mechanical propert ies suffer of a lack of models in the literature. The most advance has 
been realized in the works of Dean et al 16) in which a damaged approach is used . More 
details on these t heoretical works will be given in Chapter 3. 

The other li mi t to t he mocleling of bonclecl joints is clue to t he calcula ti on t i me of 
finite element simulations. Indeed the finite element softwares used for crashworthiness 
computation!'i a re basecl on explicit integration scheme. In this scheme. the time step 
usecl for the computation is basecl on the time neeclecl by an elastic wave to cross t he 
smallest element. This time can be computed with the Frieclrichs and Levy cri terion: 

!::.i = l . If; ( 1.1) 

where l is the shortest length of the considered element , p its volumic mass and E its 
elasti city modulus. An illu t ra tion of t he time step computation for a clefined mesh is 
illustra ted in Figure 1. 7 and in Table 1.2. The time step of the adhe-ive volumic elements 
is always lower than the time step of steel shells, the only possibility to obtain the same 
time step iu both elements is to use a mesh of 1 mm for t he st eel and only one element 
through the t hickness of the bonded joints (typically 0.3 mm). This solution is unusable 
due to two reasons, firstly a shell mesh of 1 mm for crashworthiness is non-realistic with 
current computers and a description of the bonded joint with only one element though 
the t hickness will not give accurat e results. 

Figure 1. 7: illustration of element sizes. 

by David MORIN 
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Psteel 

Esteel 

Padhesive 

Eadhesive 

7800Kgjm3 

2.1e11 Pa 
1180Kgjm3 

2e9 Pa 

l Steel (in mm) 
time step 

l Adhesive (in mm) 
time step 

Chapter 1. Introduction 

5 3 1 

1 f.LS 0.6 f.LS 0.2 f.LS 

0.3 0.1 0.03 

0.2 f.LS 0.07 f.LS 0.02 f.LS 

Table 1.2: illustration of time step problem between steel shell and adhesive volume. 

Sorne techniques are already used in industry and litterature to solve the problem of the 
computation time. From an industrial point of view, mass scaling technique can be used 
to artificially increase the volumic mass and the resulting time step but this approach 
underestimate stress and could lead to false prediction of damage and failure of the 
bonded joints. The other point of view would lead to use interface elements to skip the 
problem of the time step, this approach is widely used in literature for various problems 
and will be extended in Chapter 4. 

Unfortunately a fine description of the behaviour and failure of the bonded joints 
and a small computation time can not be solved with the same model. Soin this thesis, 
instead of a unique model, a modeling strategy of bonded joints is then developped. 
This strategy is based on two models as summarized in Table 1.3. The first one which 
is called mesoscopic madel is based on fine behaviour and failure models which are 
able to represent all the specificities of the adhesive mechanical behaviour. This model 
is used with many elements in the thickness of the bonded joints but need a small 
time step and the resulting huge computation time. The second approach is called 
macroscopic model and is based on an interface element which has no effect on the 
time step computation. Unless this model is not time consuming its representation of 
the behaviour and failure of the adhesive is simplified. 

Mo del Mesoscopic Macroscopic 
Advantages fine description of properties no effect on the time step 

Disadvantages small time step simplified description of properties 

Table 1.3: summarize of the different models. 

Then the proposed modeling strategy is illustrated in Figure 1.8. In the particular con­
text of crashbox design, the different available shapes can be firstly analysed with the 
macroscopic approach so as to selected the best one and secondly a fine analysis is needed 
with the mesoscopic approach before finally validate the selected shape with experiments. 

Th en these thesis works are divided into five main parts. The first one ( called here 
Chapter 2) deals with the experimental campaign on bulk adhesive specimens which have 
been chosen for the homogenous stress fields and easy analysis. The second part ( called 
here Chapter 3) deals with the implementation of the mesoscopic approach into ABAQUS 
explicit through a user-material subroutine. The third part ( called here Chapter 4) is 
devoted to the development of the macroscopic approach and its implementation in to 
ABAQUS explicit through a user-element subroutine. Finally the fourth part ( called here 

Experiments and models until failure of bonded joints for crashworthiness 
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Experiments Mcsoscopic modcl 
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nu 

Macroscopic mode! 

Figure 1.8: representation of the proposed modeling strategy. 

7 

Chapter 5) of this thesis is devoted to the validation of the two approaches on different 
complex Joad tests. 

by David MORIN 
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10 Chapter 2. Experimentation and characterization of bulk adhesive 

2.1 Literature study and proposed approach 

Experimental characterization of behaviour and failure of bonded joints are tackled with 
different points of view in the literature : 

• testing on assemblies. 

• testing on bulk materials. 

The mainly usecl technique is realized by achieving test directly ou assemblies. Different 
kinds of loaclings can be applied on bonded joints with this experimental methocl. Ten­
si le/ compressive, shear and mixed loadings are obtained with bu tt , single or double lap 
and scarf joints respectively (Figure 2.1) [1] [2] [3] [4] [5] . The benefit of t hese tests is 
to allow the characterization of bonded joints in conditions near t hose used in industry. 
In the particular context of automotive industry, the same metal sheets used for an au­
tomotive structure can be used and the chemical composition of adherent surface are the 
sarne. Unfortunately these tests suffer of two main problems [7] [8]: 

• high stress heterogeneities in the bonded joint, 

• global response is highly inftuenced by the adherent properties, 

Figure 2.1: Classical bonded joints geometries. 

Some special tests devoted to failure characterization of bonded joints are also present in 
the literature [9] ]10] ]11] [12]. In these tests, peeling and cleavage loadings are applied 
on bonded joints so as to identify the adhesion of an adhesive. Although these tests 
provide a good estimation of failure resistance of an adhesive , the obtained data are not 
suitable for finite element modeling. Another impact strength tests are also proposed 
by Goglio et al [13], t hese tests are based on Charpy 's pendulum and provide different 
stress combinations. Ali these impact tests suffer of the same problems than the classical 
assemblies tests (2.1) . 
These problerns and geometical configuration of assembly specimen lead to high difficulty 
to identify strain and stress inside the bonded joints. To avoid these problems, sorne 
analytical models are used like shear !ag mode! [14] but their deployrnents are always 
hard and plasticity of adherents is rarely take into account . 
Some solutions are proposed in literature to solve the above problems like in the works of 

E.rperiments and models mdil fail'UTe of bonded joints foT cmshworthiness 



2.1. Literature study and proposed approach 11 

Cagnard et al [15] [16] in which a new specimen geometry derived from the Arcan test [17] 
is designed. This new geometry allows to obtain a more homogenous stress distribution 
inside the bonded joint. The difficulty of this test is that so as to obtain a good stress 
field a complex beak is needed near the bonded joint. This beak is only achievable on 
massive steel specimen and chemical surface composition and industrial conditions are 
not respected anymore. This new test is also difficult to realize at high strain rates due 
to important mass of the clamping system. 
The other point of view used in the literature to characterize the behaviour and failure 
of adhesive is to achieve tests on bulk adhesive specimens [18]. This kinds of tests which 
are used by the chemical industries to identify classical elastic properties, are not very 
used in the literature in face of the assemblies tests. These bulk tests allow to obtain a 
very homogeneous stress state inside the specimens and to use classical stress and strain 
calculations formula. These tests are only limited by two problems: 

• industrial conditions are not respected due to huge thickness needed and the absence 
of adherent, 

• it is difficult to obtain pore free sample due to original packaging of industrial 
adhesive. 

In this work, the bulk adhesive specimen testing is chosen so as to characterize the be­
haviour and failure of a toughened epoxy adhesive. In order to obtain a fine behaviour 
and failure model various kinds of loadings and a wide strain rate range are needed. This 
is achieved by realizing tensile, compressive and shear tests using different loading deviees. 
New measurement techniques like 2D and 3D Digital Image Correlation (DIC) [19] [20] 
are used to identify mechanical properties of the adhesive. 
These experimental results lead to the idenfication of mathematicals models which will de­
scribe the material behaviour and failure properties. In the literature sorne visco-elasticity 
models are already defined on various materials but not on toughened epoxy adhesive [21] 
[22]. These models are classicaly identified by complex tests like relaxation and/or creep 
tests. An alternative method to identify these kinds of models would lead to realize Dy­
namic Modal Analysis (D.M.A) tests [23] (24]. Although these tests are easy to realize the 
identification of models'parameters are very complicated due to the complex formulation 
of the results. In the works of Rich eton et al [25], a similar study is realized on a polymer 
materials and the visco-elasticity is taken into account by a viscous elastic modulus which 
is formulated by a logarithmic function (equation 2.1). 

E (i) =a+ b.ln ( :
0

) (2.1) 

where a and b are the visco-elasticity parameters and i 0 a parameter needed to obtain an 
adimensional logarithm. 
Literature suffers of a lack of visco-plastic models for toughened epoxy adhesives. This 
part of behaviour is generally clone by tabulated behaviour law in finite element codes 
[26]. For polymer materials the G'Sell model [27] [28] describes the evolution of stress in 
function of strain and strain rate by means of exponential products as shown in equation 
2.2 and 2.3. 

(2.2) 

by David MORIN 
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(2.3) 

where K is the rigidity parameter, w the visco-elasticity parameter, (h, a, b, n) the struc­
tural hardening parameters and m the strain rate sensitivity parameter. 
This model is modified in the literature so as to match their specifie contexts [29] 

(2.4) 

where K is the rigidity parameter, w the visco-elasticity parameter, (h1 , h2 ) the structural 
hardening parameters and m the sti·ain rate sensitivity. 
Following this principle, the most ad vance is realized by EPEE [30]. He proposes to 
exclude the visco-elasticity phase from the behaviour law by using an additive formulation 

- K (1 -w.ep) (h / n) ·m 17- ay + . - e . l·ép + L2.ép .é (2.5) 

where t7y is the yied stress, K the rigidity parameter, w the hook parameter, h1 , h2 , n the 
structural hardening parameters and m the strain rate sensitivity parameter. 
In the literature, volume variation is generally tackled with a plastic Poisson's ratio which 
is not equal to 0.5 or by a damage model. Damage evolution is generally tackled for 
the toughened epoxy adhesive with a Gurson damage madel (6]. This madel describes 
the evolution of voids. Although this model gives good results for metallic and sorne 
polymer-like materials, its parameters are not identified directly on experimental results 
but often by finite element inverse method [31]. Moreover sorne parameters (q1 , q2 , q3 ) 

are generally extracted from the literature (q1 = 1.5, q2 = 1, q3 = 2.25) and can not fit 
perfectly damage evolution in both metallic and polymer like materials. 
Failure of adhesive in assemblies are often predicted by a critical stress criterion (equation 
2. 7). Even if this kind of criterion is simple, its identification is not so easy due to the 
problem linked to the classical assemblies geometries (paragraph 2.1). In fini te element 
software the main failure criterion are based on a critical strain which is also difficult 
to identify on assemblies tests but are very simple to quantify on bulk specimen testing 
with new measurement techniques like D.I.C. A failure criterion based on a fixed failure 
strain is inaccurate if the dependency to the triaxiality stress ratio and the strain rate is 
not taken into account. For instance the failure criterion proposed by Johnson et al [32] 
allows the failure stl·ain to evolve with the strain rate but also with the triaxiality stress 
ratio: 

(2.6) 

where D 1 , D2 , D 3 are parameters which depend on the triaxility stress ratio fJ and D4 is 
the sensitivity parameter of the equivalent strain rate i. The parameter €0 is only used 
to obtain a non-dimensional parameter in the logarithm. Altough this criterion gives a 
good description of dependency on the strain rate, the dependency on the triaxiality stress 
ratio is only monotonie and does not represent the dependency identified on experimental 
tests. 
Another model (2.7) cornes from Wierzbicki et al works [33]. This criterion gives a fine 
description of the dependance on the triaxiality stress ratio of the failure strain but does 
not include sb·ain rate effects. 

(2.7) 
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2.2. Experim ental campaigns descript ion 13 

where 7] represent the triaxiality stress ratio and Ç the third invariant of the stress tensor , 
C1, C2 , C3 , C4 are the triaxility stress ratio parameters of the considered material. 
Here in these works , the visco-elasticity phase is clescrihed by a logarithmic model [251 due 
to its simplicity and t he available experimental data. T he visco-plasticity is tackled by a 
new modified G 'Sell law following t he works of EP EE [30]. Due to the different shapes 
between the tensile, shear and compressive behaviour laws different mathematical models 
are then proposed. Due to the complexity of the ident ifica t ion protocol of classical damage 
model like Gurson one. in this t hesis a new model used. This model is identified with 
t he plastic Poisson 's ratio evolution captured by D.I.C. techniques. The failure criterion 
is identified using the workguidelines provided by \N'ierzbicki et al [33] and Johnson et 
al [32]. These models are identified to be used in the mesoscopic finite element model 
( Chapter 3). 

2.2 Experimental catnpaigns description 

2.2.1 Bulk adhesive specimen preparation 

In orcier to perform tests on bulk specimens. an original forming process is developed 
to obtain plates of pure adhesive on the bulk form. An aluminum mould is designed to 
perform adhesive plates (Figure 2.2a). This mould is ini t ially coverecl with a teflon film 
so as to limi t adhesion problems. The adhesive is previously stored in a cart ridge, and 
then placed in the mould with an electrical gas gun. Mechanical propert ies of adhesive 
are dependent on t he temperature, time of curing and pressure leve] applied during curing 
phases [34], [35], [36]. In orcier to reduce these clependaucy, the process parameters are 
controlled using a heating press (Figure 2.2b) . 

a) b) 

Figure 2.2: descript ion of a) aluminum mould and b) heating press. 
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14 Chapte r 2 . E x p erimentation and characterization of bulk adhesive 

' t\Tith the proposed f01·ming process , pore-free sample remains difficult to obtain j34] . This 
difficul ty has to be seriously threated due to high sb·ain localization on pore specimen as 
illustrated in Figure 2.3. The measured strains are also higly iufluenced by pore as shawn 
is Figure 2.4. In consequence. a control of t he porosity is carried out wit h lightening on 

a) b) 

Figure 2.3: difference on strain fields between a) a pore and b) a pore-free specimen . 
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Figure 2.4: distribut ion of true longitudinal strain at failure on a pore and pore-h·ee 
specimen . 

each plate (Figure 2.5a). The next step consists in t he localization of porisity which could 
not be detected due to their very small size. For that, the micro- tomogTaphy technique 
is used on small samples ext ract ed from t he plates (2*3*3mm). The size of the pore are 
estimated close to 80 J.Ll1l . These porosit ies will he takeu into account as ini t ial void in 
fur t her behaviour ma del developm nts (Figure 2.5b). 
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'llho 

3mm 

a) b) 

Figure 2.5: a) localization of pores by lighting technique on a plate and b) j.iCT scan of 
adhesive plate. 

After this control process , specimens are machined by water-cutting i11 the adhesive plates. 
This technique is used so as to reduce the heating of specimens where dramatical issues 
could be observed by classical machining operations; moreover the risk of crack initiation 
is reduced. 

2.2.2 Presentation of loading deviees 

In order to cover a wide range of strain rates, different loading deviees are needed: 

• a classical electro-mechanical machine for the low strain rates range [0 .01;0.1] ç 1
, 

• a high speed hydraulic machine for the intermediate strain rates range 10.1 ;100] Ç
1 

(Figure 2.6 a) b)), 

• Hopkinson bars for the high strain rates range over 100 s- 1 (Figure 2.7 a) b)) . 

The classical tensi le tests are performed on the [0 .01 ; 400] ç 1 range using t he three 
loading deviees described above while the notched tensile tests are only achieved on the 
electro-mechanical and highspeed hydraulic machines but lead to the same strain rate 
range as the cla:ssical tensi le tests due to the presence of the notch. Compressive tests are 
achieved on the [0.53 ; 5000] ç 1 range using the high speed hydraulic machine and a set 
of visco-elastic Hopkinson bars made of PA66. The shear tests performed with Iosipescu 
deviee are only limited to lo-w strain rate (0.02 ç 1

) due to the complexity of the clamping 
system (Figure 2.8). 
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16 Chapter 2. Experimentation and characterization of bulk adhesive 

a) b) 

Figure 2.6: high speed hydraulic a) tensile and b) compressive conf-igurations. 

a) b) 

Figure 2.7: a) pre-stressed tensile and b) visco-elastic compressive Hopkinson bars. 

Figure 2.8: Iosipescu shear test deviee. 
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2.2 . Exp erimental camp a igns descript ion 17 

2.2.3 Presentation of speciinen geometries 

For t he classical tensile tests , a normative geometry is used (N F-EN-IS0-527-3) for the 
low strain rate range (Figure 2.9). This geometry is slighty modify so asto be adapted to 
t he high speed hydraulie machine jack (Figure 2.10). For the pre-stressed Hopkinson bars 
an innovative geometry is used (Figure 2.11 a) and finite element simulations are made 
in orcier to quantify the geometry effect 0 11 the strain fields (Figure 2.11 b ). 

15 mm 15 mm 
· ' ' !~R47mm 1 i i 

10 mm! 

1 1== 1 

Jsmm 

1 i 1 

1 
1 i 30mm 1, 

90 mm 
, . 

Figure 2.9: normalized geornetry of specimen for low strain rat e range (thickness 4mrn). 
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Figure 2.10 : modified samples based on normalized geornetry used for highspeed hydraulic 
machine (thickness 4mrn). 
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Figure 2.11: a) specimen geometry for t he Hopkinson tensile testing (thickness 4mm) and 
b) F .E . results in terms of equivalent plastic strain. 

The notched t ensile specimens geometry which will be used for the failure criterion is based 
on the classical tensile geometries wit h simply a half hole on each side of the specimen 
(Figure 2.12). As for t he classical teusile tests , the notched specimen geometry is modified 
for high speed hydraulic machine jack (Figure 2.13). 
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18 Chapter 2. Experimentation and characterization of bulk adhesive 

15mm 

Figure 2.12: notched specimen used for low strain rate range (thickness 4mm). 

1
-•------~·1 /mm Rlmm l' : 
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Figure 2.13: notched specimen used for highspeed hydraulic machine (thickness 4mm). 

The compressive test geometries are extracted from the NF-IS0-604 norm (Figure 2.14a). 
A simple formulais given to determine the ratio between height and radius of the specimen 
according to a critical plastic strain: 

é "t < 0 4. (~)2 
Crt - l h (2.8) 

where Ecrit is the critical plastic strain, x is the radius of the cylinder specimen and 
h is the height of the cylinder. A critical plastic strain close to 0.5 is considered here 
for calculations. 'I\vo different geometries are used as shown in Figure 2.14, these two 
specimen geometries are cured under two pressures (1 MPa and 4 MPa) so as to study 
the influence of curing pressure on the mechanical properties of the chosen toughened 
epoxy adhesive. 

Figure 2.14: normalized geometry of the compressive specimen. 

The shear loading is obtained by the flexure of a V-notched bearn, this test which is 
originally designed for composite materials is called the Iosipescu test. The Iosipescu 
shear geometry is extracted from the ASTM norm D5379 (Figure 2.15). 
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Figure 2.15: normalized geometry of the Iosipescu shear specimen. 

2.2.4 Presentation of n1easurement techniques 

To identify the behaviour and failure of the toughened epoxy adhesive, two variables are 
needed the force and the displaeement obtained duriug tests. The force measurements 
are adapted to the loading deviee: 

• a classical strain gaged cell force for the electromechanical machine. 

• a piezo-electric cell force previously calibrated on the force range for t he high speed 
hydraulic machine. 

• a strain gage bridge for the Hopkinson bars. 

The sti·ain fields are achieved by bot h contact and non-contact methods. Contact method 
is realized by classical strain gages , typical low elongation strain for the tensile elasticity 
measurement while shear elasticity and plast icity measurements are realized with high 
elongat ion straiu gagecL All strain gages used for tensile measurements are bonded using 
typical cyanoacrylate adhesive while st rain gages used for shear measurements (Figure 
2.16) are bonded with a special cyanoacrylate adhesive especially designed for high elon­
gation. Adhesive of strain gage is reticulated at room temperature for 24 hours under 
pressure applied with a special purpose spring clamp. 

Figure 2.16: strain gages on Iosipescu specimen. 

Two non-contact measurement techniques nre used to obtain the displacements fields. For 
the compressive tests an electro-optical extensometer Zimmer with a bandwidth 250 kHz 
is used (Figure 2.17a). This deviee follows two black/ white t ransition markers exposed 

by David MORIN 



20 Chapter 2. Ex perimentation and characterization of bulk adhesive 

a) b) 

Figure 2.17: configuration of a) electro-optical extensometer Rnd b) 3D DIC. 

to a homogenous lightiug. It determines in real time t he CUITent displacement and gives 
the possibility of calculatiug t rue total strain from quasi-sta.t ic to dynamic loadings. 
The other non-contact methods used is the DigitRl Image Correlation (D.l. C.) technique 
under its 2D and 3D forms (Figure 2.17b ). In order to est imate t he out-of-plane dis­
placements, 3D DIC is used on a sta t ic classical tensile test (0.02 s- 1 

). This test proves 
tha t out-of-plane displacemeuts are smaller thau the spatial resolution of DIC. 2D DIC is 
used for the rest of the classical and notched tensile tests. 3D DIC is used to analyse t he 
quality of the compressive and shear tests but a lso to ident ify the true equivalent failure 
strain of shear test s. For all the DIC calculations , a strain length of 300 J.Lm is used. For 
the acquisition of the pictures needed for the D.I. C . calculations two kinds of cameras are 
used: 

• a CCD captor wi th a 10 f. s- 1 acquisition rate for the low strain rate tests 

• a CiVIOS captor wi th a 50, 1000, 15000, 37500 f.ç1 acquisition rate for the middle 
and high stra in ra te test s 

2.2.5 Description of behaviour law computations 

In order to establish a visco-plastic beahviour, three vari ables are needed , the true equiva­
lent strain , the t ruc equivalent straiu rate and the true stress. Three kinds of computat ious 
are used for the t eusile, compressive and shear test s. Due to the limitat ion of strain rat e, 
the shear plastic behaviour is not est ablish under visco-plastic behaviour. 
For the t ensile test , the true equivalent st.rain is obt ained from : 

~ 
E =v 3·E: E (2.9) 

where 'E is the strain tensor filled by DIC calculations. 
True . t rain rate is obtained by backward fini te difference following: 

.:_ E'( t ) - 'E(t - b. t) 
é = ~~--~----~ 

b.t 
(2.10) 
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2.2. Experimental campaigns description 21 

where D.t is the time st ep of the CCD or C lOS captor. 
This kind of derivate calculatiou leacls to noisy results so a numerical smooth is applied 
as illustratecl in Figure 2.18. This numerical smooth is based on a local regression using 
weighted linear least squares aud a 2 n d degree polynomial mode!, the method assigns lower 
weight to outliers in the regression and zero weight to data outside six mean absolute 
deviation · 

- Noisy results 
- Smoothed results 

0+-~~~~~~~~~~~~~~~~~~-, 

0 0,0005 0 ,001 0,0015 0,002 0,0025 
Tlme (in s) 

Figure 2.18: difference between noisy aud smoot hed data. 

For the tensile tests , the true stress is computecl using: 

F 
a = _ e-"22 e-"33 1 0 . 0 

'-' O 
(2.11) 

where F is t he current force in the specimen , S0 the init ial cross-section of the specimen 
and E22• E33 the strain of t he cross section . To clefine the tensile visco-plasti c behaviour 
law t he SEË method is used l37). This technique, previously developped in the LAMIH 
laboratory, uses the heterogeneit.y of the strain field during a tensile test to est.ablish a 
visco-plastic behaviour law (Figure 2.19a & b). 

The behaviour law at constant strain rate is then ext racted by a numerical eut of the 
3D behaviour surface established in the true strain true strain rate and t rue stress space 
by S EÈ method (Figure 2.20a & b ). 
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22 Chapter 2. Experimentation and characterization of bulk adhesive 

a) b) 

Figure 2.19: descript ion of a) heterogeueous strain fields and b) behaviour surface. 

constant Ë 

a) b) 

Figure 2.20: description of a) Nmnerical eut of surface and b) t rue behaviour law at 
eoustant strain rate. 

For t he compressive behaviour law, the same formula as t.eusile behaviour law is used 
(eq 2.11). lndeed ouly the longit udinal strain fe is obtained from the electro-optical 
extensometer. Then appropriated hypothesis has to be made to determine the cross­
sections strains E22 and E33. 

À 
Ec = ln( 1 + -

1 
) 

'·o 
(2. 12) 

where À is the current elongat ion given hy the electro-optical extensometer and ho the 
initütl beight of the specimen . As for the establishment of a visco-plastic behaviour the 
strain rate is needed , for the compressive test the true strain rate for compressive tests is 
compute following equatiou 2.10. 
The shear behaviour law is obtained followiug: 

F 
O"sheœr = 0 

DQ 

in which F is the total streugth of the specimen and S0 the initial cross section. 
The shear strain neecled for the behaviour law is deterrnined by: 

Experiments and models until fa ilur·e of bonded joints for' crashworthiness 
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where s_45o and é +45o are the strains meas ured by t be gages oriented at ±45°. 

2.2.6 Description of failure strain computation 

The failure strain computation is only limited by two questions: 

• when it is computed ? 

• where it is computed ? 

23 

For compressive t ests, t he failure detection is realized directly on the stress /strain re­
sponse of t he t est . As illustra tes in Figure 2.21, the failure iui t iation is located at t he 
first stressj strain curve inflexion . The uncertainty, linked to this kind of identification 
techuique, is totally neglicted in front of the na tural dispersion of failure pheuomenon. 
For the computation location the true strain in compressive tests cames from a global 
elongation measurement , then the strain field is assumed to be homogeneous and there is 
no influence of the location. 

100 

1- test strain rate 53 s·1 1 
80 

... 
A. 
:1: 60 

~ .. .. .. .. .. .. .. 
~ 

40 

20 

0,2 0.4 0 ,6 0 ,8 1 1.2 
True longitudinal straln 

Figure 2.21: failure detect ion technique for compressive tests. 

For the classical, notched t ensile and the shear tes ts , the digit al image correlat ion tech­
nique is used. With this kind of measurement method the identified failure strain depends 
on t he last picture used for the displacements measurement. As illustrat es in Figure 2.22 
t he last pict ure used is the previous of the first one on which a crack is clearly visible. 
This kinds of considerations lead to an uncertainty on the failure strain which is evaluated 
by: 

(2.15) 

where /:l.[ 1 is the failure strain uncertainty, !:l.t. is t he CCD or CMOS captor frame acqui­
sit ion rate, l 1 and [ 1 are t he mean failure strain and strain rate respectively observed at 
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24 Chapter 2. Experimentation and characterization of bulk adhesive 

the considered frame acquisition rate. 
Figure 2.23 illustrates the results in term of uncertainty on the failure strain on the various 
frame acquisition rate used. The maximum uncertainty observed is equal to 8.2 percent , 
this uucertainty has to be correlate to the natural dispersiou of failure phenomenon. The 
failure detection technique has a small inftueuce on the dispersion of the fai lure strain 
value. 

t+l!.t 

Visible crack initiation 

t-l!.t t+ l!.t 

Figure 2.22: failure detection technique used for tensile. notched tensi le and shear tests. 

10 

l'>'Sl Uncertainty 
- Mean uncertainty curve 
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2 
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1 100 1e+04 
CCD/CMOS captor frame rate (in f.s-1 ) 

Figure 2.23: computed uncertainty for the various fram e acquisition rate. 
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For the second question "'"' here is it computed ?", in the classical tensile test t he true 
strain is computed in the center of the specimen in the zone where a crack appears . The 
center is chosen so as to avoid boundary effects on the DIC calculations. For the notched 
tensile test, the strain field is heterogenous by definition in the specimen (Figure 2.24a ). 
This heterogeneity is neglicted when the DIC strain length calculations is chosen close to 
300~-tm (Figure 2.24b). 

0,004 

0,18 

a) 

b) 

Figure 2.24: a) true longitudinal strain field with a 8~-tm strain length calculation and b) 
true longitudinal strain field with a 300~-tm strain length calculation. 

In t he shear tests the true equivalent failure str·ain is computed in the center of the 
specimen to avoid edge effects. As for the notched tensile tests, t he shear tests are also 
submitted to heterogenous strain fields but wi th a DIC strain length calculations close to 
300~-tm , this heterogeneity is neglicted as (Figure 2.25). 
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Figure 2.25: shear st ra iu contour plot for a Iosipescu shear specimen . 

2. 3 Experimental results 

2.3.1 Elasticity 

The tensile elastic modulu. is computed wit h the rules providing by t he NF-EN-IS0-
527-3 non n. This non n indicates that the elastic modulus has to be computed between 
two points (50 and 200 p.E). In order to st udy t he visco-elasticity of t he adhesive, these 
calculations are carried out a t two different strain rates on 3 specimens a t eac:h speed. 
Although the range of stra.in rate is small (5.3*10- 3 to 53 ç 1 ) , the evolution of the 
tensile elastic modulus in funct ion of the strain rate hows a significant visco-ela.st icity 
phenomenon (Figure 2.26). 
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Figure 2.26: evolut ion of the tensile ela.stic modulus in fuuction of t he strain rate. 

These tensile tests show a.lso an influence of the strain gage location on t he strain 
field. This phenomenon is highlighted in Figure 2.27 with the repart it ion of longitudinal 
strain along the height of t he specimen. The strain gage specimen shows a low failure 
strain (0.17) compared to the non-strain gage one (0.32). This influence is only restricted 
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to the plasticity (Figure 2.28) and not affect the elastic modulus measurement. 
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Figure 2.27: repartition of longitudinal strain along the height of the strain gage specimen 
and the free one. 
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Figme 2.28: influence of strain gage on the true longitudinal strain in center of specimens. 

Elastic compressive moduli are identified on the first straight slope of the true strain -
true stress curves for different strain rates. Visco-elasticity in compressive is a highly 
non-linear phenomenon and it also shows a dependency on the pressure applied during 
curing (Figure 2.29) . This last dependency seems to be function on the strain rate too 
but more tests with different pressures applied are needed to conclude on it . 
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Figure 2.29: evolut ion of compressive elasticity modulus in fun ction of strain rate and 
cunng pressure. 

T he elastic shear modulus is computed following the AST~I D5379 nonn (Figure 2.30). 
By linking this result wi t h the isotropie defiuHion of shear modulus G (2.16) and a. Pois­
son 's ratio of 0.42 , the same magni t ude of tensile elast icity modulus at low strain rate is 
obt.ained. This last point justifies the fact that t he toughened epoxy adhesive is considered 
as isotropiC' in the normal plane where the curing pressure is applied . 

E 
G =-...,------,-

2· (1 + /.l ) 
(2.16) 

where E is the tensile elast icity modulus and /.1 the Poisson ratio. 
As for tensile measurements, t he influence of t he strain gages is st udied with 3D digital 
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Figure 2.30: computed elasticity shear chard modulus. 

image correlation . As shawn in Figure 2.31 , strain gages have no influence on the results, 
cont.rary to tensile tests (Figure 2.27 and 2.28). 

To conclude the elasticity investigation , it is shawn in Figure 2.32 tha.t visco-elasticity is 
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Figure 2.31: influence of strain gage on the true shear strain. 
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a non negligible phenomenon, that tensi le and compressive elastic moduli are differents 
and that pressure applied during curing has a strong influence on the magnitude of the 
elastic modulus. 
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Figure 2.32: synt.hesis on the elastic moduli measurements. 

2.3.2 Plasticity 

2.3.2.1 Tensile plasticity 

The tensile behaviour laws are identified by the S EE method, this method , as shawn in 
paragraph 2.2.5 , needs an hypothesis to compute the true stress followiug equation 2.11. 
For t he behaviour law shown in Figure 2.34 the transversal isotropy hypothesis is used. 
The transversal isotropy hypothesis postulates that in the cross section of a specimen, 
e:2 and E3 are equal. This hypothesis is validated by 3D image correlation technique by 
measuring the strain fields on the front and the side of the specimen at the same time. 
A maximum deviation of 350 J.-Lé is observed between front and side strains (Figure 2.33). 
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This difference is negligihle in front of the other strain magnitudes. Tranversal isotrop:v 
is validated. The true stress true strain curves illustrate in Figure 2.34 highlight a high 
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Figure 2.33: transversal strain on the cross section of the tensile specimen. 

visco-plastic character. These curves show a structural softening after a certain a.mount 
of strain. This can be explained with transversal isotropy calculation which implies the 
volumetrie strain developed during plasticity a.nd furthermore damage. It is noticed that 
this softening evolves with strain rate. 
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Figure 2.34: t.rue stress / true plastic strain curves ohtained with 8 EË method. 

2.3.2.2 Compressive plasticity 

The true stress responses of compressive tests are computed with equation (2.11). As for 
the tensile plasticity an hypothesis is needed for the cross-section strains e:22 and c33 . \i\lïth 
the a.ssumption that no damage occurs in compression. the incompressibility hypothesis 
is then chosen. This hypothesis is formulated as follows: 

c u + c22 + é:33 = Ü (2.17) 
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and the compressive behaviour law is then formulated as: 

(2.18) 

where F is t he current Joad in the specimen. 50 i t he initial cross- ection and Ec i the 
compression strain. 
Curves on Figure 2.35 and Figure 2.36 show a significant visco-plasticity and saturation 
phenomenon up to 1800 ç 1. 
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Figure 2.35: true stress versus t rue plastic strain for 4 MPa curiug pressure specimen. 
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Figure 2.36: true stress versus true plast ic strain for 1 MPa curing pressure specimen. 
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4 l\1Pa curing specimens show a book at the beginning of the curve (2': 0 and :::; 0.1 
true plastic strain) for high strain rate loading:s only. this hook is not clearly visible on 
t he l MPa specimens. These curves also shovv a structural hardening around 0.5 of true 
plastic strain . A visible difference in stress level between the two curing specimen series 
is observed at the same strain rate (Figure 2.37). 

80 

- 4 MPa specimen 
- 1 MPa specimen 

10 

0,05 0,1 0,15 0,2 
True plastic strain 

Figure 2.37: influence of curing pressure on t he stress level of toughened epoxy (53 ç 1) . 

The validit.y of t he results in terms of stress and strain is checked by controlling the 
shape of the specimen during the test with 3D digital image correlation (Figure 2.38). 
These measurements prove that no buckling phenomena occur during t he tests. 

a) b) 

Figure 2.38: a) ini t ial shape and b) deformed shape with a true sti·ain of 0.5. 
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2.3.2.3 Shear plasticity 

The shear behaviour law is computed by equations 2.13 and 2.14. Before to present the 
shear behaviour law, a fine study on t he quality of t he shear loading is needed. The 
principal directions of t he diagonalized strain tensor are observee!. This is possible with 
3D digital image correlation calculations (Figure 2.39). ln this figure, it can be seen that 
principal vectors are always orientee! at ± 45° of t he neutra! axis of the specimen but t his 
consideration is not sufficient to confirm t he pure shear stress state. 

Figure 2. 39: principal directions of diagonalized strain tensor. 

ln addi tion . the magnitude of the eigen values of t he strain tensor have to be checked . 
This is illustrated in Figure 2.40 which shows the evolution of principal strains during a 
t est on three points of the specimen (top, middle, bottom). At the middle of the test 
(around 15 s) difference between the principal strains is negligible (less than 300 p,E) but 
near fail ure this difference increases (more th an 20000 p,E) and shear loading con di t i ons 
are no longer respectee! . 
These considerations leacl to a confidence interval on the behaviour law extracted fr om 
the shear test (Figure 2.41). 
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Figure 2.40: evolution of local principal strains during an shear test. 
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Figure 2.41: shear behaviour law and confidence interval. 

2.3.2.4 Non-isochoric plasticity 

The non-isochoric plasticity is studied through the evolution of plastic Poisson 's ratio 
obtained by DIC calculations. The value of plastic Poisson ratio decrease with the increase 
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of plastic strain (Figure 2.42). This evolution and the value of plastic Poisson ratio 
(different to 0.5), proves the non-isochoric plastic behaviour and the presence of damage. 
The difference between the identi:fied plastic Poisson's ratio on classical and notched tensile 
tests indicates that triaxiality stress ratio has a great influence on damage evolution. 
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Figure 2.42: evolution of plastic Poisson's ratio. 

2.3.2.5 Summary on plasticity 

Figure 2.43 shows the evolution of the yield stresses in tensile, shear and compressive for 
two curing pressures in fuuction of strain rate. A non negligible difference is clearly visible 
between tensile and compressive behaviour in opposition of shear and tensile behaviours 
look the same. In addition to these remarks a high visco-plasticity character is shown. In 
terms of plasticity, a signi:ficant difference between tension and compressive behaviours is 
shown (Figure 2.44). 
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Figure 2.43: comparison between tensile, compressive and shear :vield stresses. 
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Figure 2.44: romparison bctween tensile and compressive plas ticity bchaviour. 

2.3.3 Failure 

For the classical and notched t ensile tests. the t rue equivalent failure strain is computed 
following equation 2.9 in which ~ is equal to: 

0 ] 0 . 
é22 

(2.19) 

The simplifications applied on the strain tensor ~are in total accordance with the transver­
sal isotropy hypothesis mentioned above. Although the shear strain c12 is negligible, the 
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strain value furnish by DIC computatiou is taken into account . 
The evolution of true equivalent failure strain in function of true equivalent failure strain 
rate for the classical tensile test is shown in Figure 2.45. A real depenclency on the strain 
rate is shown on the evolution of true equivalent failure strain in function of the equivalent 
failure strain rate (Figure 2.45). 
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Figure 2.45: evolution of equivalent failure strain of tensile specimens in function of the 
equivalent strain rate. 

The evolution of the true equivalent failure strain obtained during notched tensile tests in 
fuu ction of the true equivalent strain rates is illustrated in Figure 2.46. The dependance 
of t he equivalent failure stl·ain to the strain rate is confirmed . 
For the shear tests , the true equivalent failure strain is computed following equation 2.9 
in which € is equal to: 

(2 .20) 

The simplifications applied on the stl·ain tensor 'E are in total accordance with the plane 
strain hypothesis which takes place in shear test. Although the volumic strains e: 11 and 
e:22 are negligible, the strain value furnish by DIC computation are taken into account . 
Due to important dispersion , a mean value for the equivalent failure strain is chosen as 
illustrated in Figure 2.4 7. As the Iosipescu is only perform ed at. one loading speed, the 
stra in rate dependency is arbitrary fixecl to be the same as the tensile tests one. 
For the compression with electro-opt.ical ext.ensometer only the longitudinal strain is ob­
tained , so two hypothesis have to be made. Firstly, the E22 component has to be deduced 
from the longitudinal st.rain E 11 . This is achieved by considering damage phenomenon 
totally negligible in compression and c22 is computed following t he incompressibili ty hy­
pot.hesis ( eq 2.17) : 

1 
E22 = --.éll 

2 
(2.21) 
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Figm e 2.47: tm e equivalent failure strain on Iosipescu shear tests. 

Secondly, an hypothesis is also made for the thickness behaviour , here again the incom­
pressibility isotropy is used to compute c33 . The true equivalent failure strain is obtained 
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by equation (2.9) and equation (2.21) 

_ [ f 11 
E= 0 

0 

0 
-~.Eu 

0 - (en ~ ~.en ) ] 

39 

(2.22) 

As for the classical and notclwd tensile tests. a real dependency to the straiu rate is 
highlighthed for the compressive tests (Figure 2.48). 
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Figure 2.48: evolution of equivalent failure strain of compressive specimens in functiou of 
the equivalent strain rate. 

As a conclusion of the experimental characterization of the failure of toughened epoxy 
adhesive, it is highlighted that a high dependency of the fai lure straiu on the failure stmin 
rate is present . It is also shown that the failure strain depends on the kinds of loadings 
and specimens (i.e. tensile, not.ched tensile, shear and compressive). This last dependeucy 
is in fact a dependency on the triaxiality stress ratio and its description will be given in 
the paragraph 2.4 .3. 

2.4 Behaviour and failure n1.odels identifications 

2.4.1 Visco-elasticity model 

By applying the works of Richeton et al 125] to the experimental results (Figure 2.31 
(Figure 2.49). Bi-logarithmic models have to be used to describe the compressive visco­
elasticity. The tensile visco-elasticity with only two measurement points lead to a loga-
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rithmic mode! (equa tion 2.23). 

E(i) =a + b.ln ( :
0

) (2. 23) 

where a and b are the visco-elasticity parameters and Ëo a parameter needecl to obtain an 
adimensionallogari t hm. 
As the tensile tests a re performed with a 1 l'viPa curing pressure, t he low strain ra te mode! 
for 1 1Pa compressive tests is exteuded from t he 4 l\1Pa one in orcier to obtain a complete 
descript ion in terms of st rain rate. 
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Figure 2.49: evolution of elasticity modulus in function of t rue strain rate. 

Visco-plasticity 1nodel 

For both tensile and shear tests, a modifiee! G 'Sel! laws is identifiee! fo llowing equation 
3.6. The result s of this identification is shawn in Figure 2.50 and 2.51. 

(2.24) 

By computing the t rue behaviour laws from the SEË methocl with the transversal 
isotropy hypothesis, the damage is inclucled into the behaviour law. If it could not be a 
problem to represent a pure tensile loading it will not be the same for a notched teusile 
for instance. To avoid this problem, the true behaviour laws are computed follmving the 
incompressibility hyp othesis which lead to 

(2.25) 
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Figure 2.50: identification of t ensile behaviour law. 

41 

ln orcier to take the visco-plasticity into account classical multiplicative visco-plastic mod­
els can not be usee! (38] [39]. These classical models only realize an homothetie transfor­
mation of the behaviour than in experimental the shape of these laws also evolves. So as 
to describe this phenomenon. a behaviour law in which each parameter depends on the 
strain rate has to be usee! (equation 2.26) . This kind of behaviour laws give a perfect 
description of behaviour law. 

- ( ") K ( ') (1 -w(e' ).ép) (1 l ( ') ) CJt j s - a y E + E . - e . + lt E .Ep (2.26) 

where a y is the yield stress , K the glohal rigidity, w the hook parameter and h1 the 
structural hardening parameter . 
For the compressive behaviour laws another modihed mode] is usee! to clescribe the ex­
perimental data. This behaviour madel is basee! on a modification of the previous madel 
(equation 2 .26) and leads to: 

a c = a y (i) + K (i). (1 - e - w( t: ).E" ). (1 + h1 (i) .Ep +hz (i) .E; + h3 (i ) .c;) (2.27) 

where a y is the yielcl stress, K the global rigidity, w the hook parameter and h 1, h2 , h3 

the structural hardening parameters. Here again , the visco-plasticity is clescribed by by 
taking the st rain rate dependance into account in arder to give the best description of the 
behaviour laws as shown in Figure 2.52. 

2.4.3 Volume variation and damage madel 

By linking the observation of plastic Poisson's ratio evolution (Figure 2.42) to a damage 
evolution by: 

(2 .28) 
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Figure 2.51: identification of shear behaviour law. 
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Figure 2.52: identification of compressive behaviour law. 

•• 

where '-'Pm is the measured plastic Poisson 's ratio and vP the undamaged plastic Poissou 's 
ratio , a damage variable d can be identifiee! . By usillg curves illustrated in Figure 2.53 au 
origiual mathematical expression for the damage evolution is proposee! 

(2.29) 

By identifying the previous mode] (equation 2.29) on the different damage 's evolution 
curves of Figure 2.53 a dependency on the triaxiality stress ratio is included into the 
model. So as to obtain a better description of the depeudency on the triaxiality stress 
ratio, the hypothesis that in pure shear (i.e. 17 = 0) no damage evolution can occur is 
made. Following the identification shown in Figure 2.54, 2.55 aBd 2.56 a deta.iled damage 
is formulated following: 

(2.30) 
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Figur 2.53: evolution of damage for two different triaxiality stress ratio. 

where d1 , d2 , K 0 , w1 and w2 are parameters dependiug on the triaxiality stress ratio. 
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Figure 2.56: identifica tion of 'Wd damage evolut ion law parameter. 

2.4.4 Failure madel 

By linking the works of Johnson et al and \Vierbizcki et al and following the strat egy 
illustrates in Figure 2.57 a triaxiali ty stress rat io and stt·ain rate dependent failure criterion 
is identified . 
As shawn in Figure 2.45, 2.46, 2.48, a logaritlnnic madel can be used to describe the 
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Figure 2.57: identification strategy for the failure criterion. 

failure strain dependency on the strain rate: 

45 

(2.31) 

where af , b! are functions which depend on the triaxiality stress ratio ·r7 and Ëo is used to 
obtain a uon-dimensional parameter in the logarithm. 
This procedure leads to the identification of the fuuction a 1 and b 1 in function of the 
triaxiality stress ratio 7]. For the formulation of the a1 function , a simple polynomial 
approximation is made as Figure 2.58 illustrates. The st.rain rate dependency represented 
by the function b1 is identified following the data in Figure 2.59. The description of 
the viscous part of the criterion is not described by a monotonie function but by three 
funct ions as shown in Figure 2.59. 
The final criterion model leads to 

for 11 :::; 0 

EJ(TJ , Ë) = (a11o + a171.r7 + a 172 .7]
2 + a173.r73) + b171.ln(!) 

Eo 

for o:::; 1} :::; 0.33 
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for rt 2:: 0.33 

A 3D representat ion of the criterion is shown in Figure 2.60. 
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As the failure model is identifiee[ on restricted range of triaxiality stress ratios and strain 
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Figure 2.60: 3D representation of the new failure criterion . 

rates, it is uecessary to check the valiclity of this mathematical model for higher values of 
strain rates and triaxiality stress ratios. As shown in Figure 2.61 , the previously identifiee[ 
criterion is not suitable for triaxiality stress ratios which are higher than 0.5 and lower than 
-0.5. For the extrapolation in terms of strain rates as Figure 2.62 shown , the predicted 
failure strain for tensile, notched tensile and shear are correct over 400 s- 1• 
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Figure 2.61: study of the fai lure criterion at constant str·ain rate on a wide range of 
triaxiality stress ratios. 

In order to solve these problems, the failure criterion is locked in term of strain rates and 
triaxiality stress ratios as illustrated in Figures 2.63 and 2.65. 
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This chapter brings a complete experimental description and models for a toughened 
epoxy adhesive from visco-elasticity to failure. This is achieved hy using new measurement 
technique like digital image correlation technique and different loading deviees. Elasticity 
results proves that visco-elasticity phenomena can not be neglicted. A difference between 
t eusile and compressive elastic moduli is found and the influence of process parameters 
like curing pressure is shown . In tenns of plasticity resul ts, difference between tensile 
and compressive behaviour is clearly visible. Here agaiu , the influence of curing pressure 
is highlighted . An original damage measurement is used and influence of the tria.'dality 
stress ratio is proven. As for the elasticity and plasticity, the failure is found as strain 
rate dependent and the influence of triaxiality stress ratio is also studied. 
These results leads to identification of mathematical models which will cover materials 
specificities. The visco-elasticity properties are tackled with a mono and bi logarithmic 
model which allow the elastic modulus to evolve with the strain rate. A new formulation 
of G 'Sel! behaviour mo del is detennined for the plasticity in tension and compression. Au 
original mode! for the damage evolution is proposed it allows to take into account the 
influence of triaxiality stres ratio. Finally, a failure model is identified in fun ction of the 
strain rate and the triaxiality stre. s ratio . These models have au impact on finit e element 
modeling and a new implementation is presented in chapter 3. 
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2.6 Models parameters summary 

Model E = a + b.ln ( fo-) é (in s-1) 

Tension 1982 
b 

130 
a 

Elasticity 
Compression 

(in MPa) 1204 (in MPa) 19 <53 
-234 381 >53 

Model Ut = u11 +K. (1- e-... ~.). (1 + h1.ep) 

CT'IJ (in MPa) K(ioMPa) w hl 

15 17 66 2.9 0.05 

Tension 16 19 80 2.6 1 

18 31 81 0.6 50 

22 32 79 1.2 100 

Visco-plasticity 35 30 64 2.8 300 
Model Uc = uy +K. (1- e-tu.E•). (1 + h1.ep + h2.e~ + h3.e~) 

CT'IJ(in MPa) K(inMPa) w hl h2 h3 

36 26 71 2.6 -2.8 -1.9 53 
Compression 86 17 137 5.8 -23 43 1400 

89 38 52 10.4 -64 118 3500 

92 26 67 28.4 -140 213 5000 

Model d = TJ. (dl + d2 .TJ) + Ko·T/· (1- e-q.(wl +wo.q).e•) 

Damage dt d2 Ko W] W2 

0.4 1.8 2.5 87 81 

Model ët(fl, è) = (~ + ~l·fl + ~2·112 + ~3·'13) + (b111 + b112·fl).ln(i-) 'T} 
~0 

af/o a111 a 112 af/3 b'll bq2 

Failure 0.07 <0 
-0.01 

0.1 -0.2 3.9 -7.6 0 0.33> >0 
-0.02 0.04 > 0.33 

Figure 2.65: summary of mesoscopic madel parameters. 
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R esume 

The aim of this chaptCT is to present the finite element implen1-entation of the m eso­
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visco-plasticity equations and non-associative plasticity. 
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3.1 Literature study and proposed models 

Different t echniques are used in the litera ture to mode! the bondee! joints at the mesoscopic 
scale in finite elemeut simulations. 2D or 3D models are used in the litera.ture. these 
models are generally used to study special geometries of bonded joints or to iuvestiga.te 
local failure init iations. 2D models are generally tackled by plane sh·ain elements 13] 17] . 
Although these models allow a fin e descript ion of stresses and strains through the thickness 
of bondee! joints they cau not take into account deformation of adherents as illustrated in 
Figure 3.1. These 2D models are also unsuitable for t he modeling of complex structures. 

Visible necking 

Figure 3.1 : example of necking in a st eel single lap joint test. 

In opposite of 2D models in which link between adherents and adhesives is performed by 
a simple merge of coïncident nodes, the link betweeu adherents and adhesives is generally 
more complex in 3D models. Of course, iu a fully volumic mode] as illustrat ed in Figure 
3.2a same merging technique as 2D models can be used but in t he particular case of 
automotive crashworthiness, volumic models of steel sheet are not representative. ln t he 
case of shell modeling of st eel sheets , two different point of view are used to numerica.lly 
bond the adhesive to the st eel sheets as illustra ted in Figure 3.2b and c. The first one 
illustrates in Figure 3.2b would lead to realize a merge between steel shell and adhesive 
volumic nodes [261, t his approa.ch is only realistic if an offset is applied on t he neutra! 
surface of the shell clements. In complex rnodeling these offsets are not realizable and 
this kind of modelling brings high problems in tenns of physical representation . In t he 
second shellmodel illustrates in Figure 3.2c, an offset equal to half of the shell t hickness is 
a.pplied hetween shell neutra.] plane and volurnic adhesive element . This kiud of mocleling 
respects the physica.l aspect of bondee! joints but need advanced numerical techniques to 
keep the offset. during a.ll the finite element simulation. 

a.) b) c) 

Figure 3.2: example of necking in a steel single la.p joint test. 

Experim ents and models until fa ilure of bonded joints for· cm shworthiness 
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Many techniques are available to solve this problem: 

• a tie constraint which force a slave and master surface to be at given distance from 
each other , 

• a mult i point constraint "vhich couples t he freedom degree of a slave node to them 
of a master one, 

• a rigid beam which link two neighbour nades. 

In t his thesis t he t ie constraint is chosen to combine t he real physical aspect of bonded 
joints to the need of shell modeling of steel sheets. In all these models, t he different kinds 
of failure mode of adhesive (Figure 3.3) cau not be predicted. Only the cohesive and the 
superficial cohesive failure can be t ake into account in t hese models. The adhesive failure 
is discarded in t his thesis according to t he adhesive producers which considers t hat t his 
failure is t he results of a wrong bonding. 

failure 

superficial cohesive 

Figure 3.3: different failure modes in a bonded joint . 

In addit ion to t hese geometrical considerations, the literature offers a various materi al 
models to simula te t he behaviour and failure of bonded joints. Due to the lack of visco­
elastic models, the visco-elasticity highlighted in Chapter 2 is not handle in t he litera ture. 
Some visco-elastic models are implemented into FE code [40] but can not be combined 
with plasticity mo dels. In tern1s of yield crit eriou , it is shown in Figure 3.4 t hat classical 
yield cri teri on like vou Mises (3.1 ) or Drucker Prager madel (3.2) 16] cau not described 
perfectly the hydrostatic pressure dependency as follows. 

(3.1) 

where a eq is t he von Mises equivalent stress and a y is the yield stress and 

(3.2) 

where a eq is the von Mises equivalent stress, PH the hydrostatic pressure, 17 the sensitivity 
parameter to the hydrostatic pressure and a y is the yield stress. 
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40 

1 

e Experimental data 
- Von mises criterion 

35 - Unear Drücker-Prager criterion 

30 

15 

10+-~~~~~~~~~~~~~~~~~~~~~~ .. 
-6 -4 -2 0 2 4 6 8 10 

Hydrostatlc pressure (in MPa) 

Figure 3.4: evaluation of classical yield criterion . 

In the li terature, some advanced yield criterion are also present . The Raga.vanah mode! 
named exponent Drucker Prager j6] j40j (eq 3.3) (iu Abaqus) and SAMP mode! (imple­
mented in LS-Dyna) j41] (eq 3.4) provide a non-linear description of t he yield criterion in 
terms of hydrostatic pressure. The yield criterion is described by: 

(3.3) 

where a and Pr are material parameters in the case of t he Ragava.nah mode! and by: 

(3.4) 

where A0 , A 1 and A2 are computed as following: 

(3.5) 

where CJ8 , CJc and Clt are the yield stress in shear , compression and tension respectively in 
t he case of the SAMP model. 
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Figure 3.5: difference between exponent Drucker Prager and SAMP model. 
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The main difference between exponent Drucker Prager and SAMP model is focused on 
the bi-axial tension and compression yield stress (Figure 3.5). But without informations 
on the bi-axial tension and compression yield stresses of the investigated toughened epoxy 
adhesive it is not possible to conclude on the best criterion. 
In the literature, the plastic behaviour is generally tackled with tabulated behaviour law 
to simulate a visco-plastic (Figure 3.6). 

Plastic strain 

Figure 3.6: illustration of tabulated visco-plastic behaviour law. 

Non-isochoric plasticity is commonly modeled with non-associative plasticity (6]. The 
theoretical aspects of this approach are detailled in paragraph 3.5.1. Failure in bonded 
joints are generally not taken into account in literature. In terms of failure criterion, the 
most common failure models present in FE codes are exposed in Chapter 2. 
In this work, the visco-elasticity is tackled using model previously identified (eq 2.23). 
The yield criterion is modeled by a bi-linear Drucker Prager model due to the lack of data 
in bi-axial tension and compression. The visco-plasticity is described by the following 
models: 

O't = O'y (i) + K (i). (1- e-w(i).ev). (1 + h1 (i) .cp) (3.6) 
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56 Chapter 3. Mesoscopic material behaviour model 

for the tension behaviour and: 

for the compressive behaviour. 
Volume variation is tackled with a non-associative approach and damage evolution by : 

(3.8) 

Finally the failure is predicted by : 

for 'Tl ::; 0 

(3.10) 

for o::; 'Tl ::; 0.33 

(3.11) 

for 'Tl~ 0.33 

3.2 General description of the material behaviour 
mo del 

The implementation of the mescoscopic finite element model follows the classical steps 
of a material subroutine. The mesoscopic model is implemented through a VUMAT 
subroutine into Abaqus explicit. This kind of subroutine gives a strain increment tensor 
in the local basis of the element and requires the export of the stress tensor also in the 
local basis. 
Firstly an elastic prediction is realized using the strain increment tensor following by a 
yield criterion check. Until the yield criterion is not satisfied the material is assumed to 
be fully elastic. If the yield criterion is satisfied then a yield return a.lgoritlun is applied 
and the stress tensor is updated [42] (Figure 3.7 a). 
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~c 
.-----'/1.'----., 

Yield return 

Stress update 

\..._ _ ___, ,-------1 v 
(]" 

a) b) 

Figure 3.7: a) general overview of the algorithm and b) description of elasticity algorithm 

3.3 Description of elastic prediction 

The elastic prediction is realized like a viscous-damaged elastic prediction following the 
algorithm illustrated in Figure 3. 7 b. As the visco-elasticity is taken into account an 
equivalent strain rate is needed (Paragraph 3.3.1), moreover the visco-elasticity models 
are different in tension and compression so a numerical test has to be done. This test is 
based on the sign of the volumetrie strain here called êv defined by 3.17. The equivalent 
strain rate is computed and the tension/compression test is done then the damage variable 
from the previous step is called and the viscous-damaged elastic prediction is performed 
(paragraph 3.3.3). 

3.3.1 Strain rate computation 

The equivalent strain rate needed for the visco-elastic prediction is computed following: 

(3.12) 

where E' is the strain rate tensor. 
As the sb·ain rate tensor is not computed by the FE software to the VUMAT subroutine, 
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the strain rate tensor is computed from the strain increment tensor t::..'E following 

. ôE [ .6.lt 
1 .6.l~ 2 

.6.lF ] t::..'E E = _ ~ .6.er2 .6.e:ry2 .6.e23 _ at .6.t .6.t .6.t t::.. t 
.6.E:J3 .6.E:23 .6.E:33 

.6.t .6.t .6.t 

(3.13) 

The equivalent strain rate is then computed following 

t = J~- ~~ . ~! = J~-~. !>~ - ~~- (3.14) 

As this kind of computation leads to noisy results, a numerical filter is used (3.15). This 
filter is extracted from PAMCRASH finite element software [43] and level of filtering is 
adapted by changing the value of parameter et (typically chosen equal to 0.3). 

-tfiltered = a.'t(t) + (1- et) i(t-.6.t) (3.15) 

3.3.2 Total strains and volumic strain computation 

In order to realize a damaged-viscous elastic prediction, the total strain tensor and the 
volumic strain have to be computed. For that, the strain increment tensor given by the 
FE software is added to the converged elastic strain from the previous time step 

'E = 'Ee(t-D.t) + t::..'E 

where Eect-~t) is the converged elastic strain tensor from the previous time step. 
Then the volumic strain is computed for the previous tensor 

3 

cv= LCii 

i=l 

3.3.3 Damaged-viscous elastic prediction 

(3.16) 

(3.17) 

In arder to realize a damaged-viscous elastic prediction, the viscous-modulus has to be 
computed following equation 2.23. The choice of the compressive or tensile model is 
realized by testing the sign of the volumic strain (equation 3.17). For the special case of 
pure shear loading the visco-elastic behaviour is assumed to be the same as tensile due 
experimental observations. Following the previous prescriptions, the damaged viscous 
elastic prediction is realize with 

'!.RI AL = E · ( 1 - d) ( .. _ cV ) 
stt 1 + v . Ctt 3 

TRIAL E. (1 - d) 
sij = 2.(1 +v) .cij 

pJ;RIAL = - E. (1 - d) .cv 
3.(1- 2.1/) 

(3.18) 

(3.19) 

where dis the damage variable of the previous time step, E the viscous elastic modulus 
and v the Poisson's ratio. In addition the equivalent stress is computed following the von 
Mises theory: 

TRIAL= J3 J (=TRIAL) 
(J' eq · 2 S (3.20) 
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where J2 is the second invariant of the deviatoric stress tensor defined by 

J (
:!TRIAL) _ ~=TRIAL . =TRIAL 

2 s - 2.8 . s (3.21) 

3.3.4 Time step consideration 

A special consideration is devoted to the time step needed for the finite element simulation. 
In Abaqus explicit, the time step of the FE simulation is computed from a fictitious time 
step. According to 1.1 the time step calculation depends on the elastic modulus so for a 
visco-elastic model in which the elastic modulus evolves with the strain rate, the highest 
elastic modulus has to be given for this calculation. This special consideration is clone to 
ensure the stablity of the FE simulation. 

3.4 Yield criterion 

A yield criterion is used to determine if the plasticity has to take place. To model the 
yield difference in tension, shear and compression a bi-linear Drucker-Prager criterion is 
used. As this criterion is composed of two linear Drucker-Prager, a tension/compression 
test has to be carried out using the volumetrie strain (Figure 3.8). 

Figure 3.8: yield criterion algorithm. 
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3.4.1 Definition of the yield criterion formulation 

The bi-linear Drucker Prager is formulated following equations (3.22) and (3.23). This 
yield criterion is illustrated in Figure 3.9. 

' ' .... 
' ' ' ' :Ü~ 

3 ' , ' , 

Figure 3.9: illustration of the double Drucker Prager yield criterion. 

where O"t, O"c and 0"8 are yield stresses in tension, compression and shear respectively, 
/31 and /32 are the friction angles related to yield stress difference in tension, shear and 
compression. 
The mathematical formulation of the criterion is explained as below: 

( 
tan (f3I)) cP= O"eq +tan (f3I) .PH- 1 + 

3 
. (1 - d) .O"t (3.22) 

( 
tan (f32)) cP= O"eq +tan (f32) .PH - 1 -

3 
. (1 - d) .O"c (3.23) 

3.4.2 Selection of yield criterion 

The selection of yield criterion is realized following the same technique as for the visco­
elastic model selection. The yield criterion is then selected with the sign of the volumic 
strain. As for the visco-elastic prediction in case of pure shear the yield criterion defined 
by {31 (3.22) is chosen. 

3.5 Yield return algorithm 

If the yield criterion is not satisfied then a yield return is needed to determine the plastic 
strains which occur in the time step. For the case of tensile loading, the non-associative 
approach is chosen (paragraph 3.5.2), a short description of the fundations of this approach 
is given in paragraph 3.5.1. In the particular case of the shear and compressive loadings, 
the classical von Mises plasticity is used due to the hypothesis that no damage phenomena 
can occur (paragraph 3.5.3). 
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3.5.1 G eneral overview of a ssociative and non-associative plastic­
ity 

The non-associative plasticity is used to madel non-isochoric plasticity. The volume varia­
tion during plasticity is represented by a plastic strain rate tensor which has a dependency 
to the hydrostatic pressure. The plastic strain rate tensor is obtained by 

(3.24) 

where D."Y is the plastic multiplier and N the return vector. 
For the particular case of a von Mises plasticit.y, an example of an associative and non­
associative plasticity is shown in Figure 3.10. In associative plasticity, the return vector 
N is obtained by differenciation of the yield criterion as equation 3.25 shows. In non­
associative plasticity, the return vector is obtained by differenciation of a plastic potential 
4; as equation 3.25 shows. For the particular case of the von Mises plasticity, the plastic 
potential has to be chosen with a hydrostatic pressure dependency so as to obtain a non 
normal return vector. 

= 84; 
J\T associative = [j(j 

= 84; 
N . t· =-nonnssoc.'1.a. 1:ve ()(j (3.25) 

O eq 

associative plasticity 

... / non-associative plasticity 
von Mises yield surface 

~ 

----------------~----------------~PH 

Figure 3.10: illustration of the difference between a non-associative and associative plas­
ticity in the von Mises case. 

3.5.2 Description of the plastic potential and the yield return 
vectors u sed for the tensile loadings 

In orcier to model the non-isochoric behaviour of the investigated toughened epoxy adhe­
sive, the following plastic potential is chosen 

J = a~RJAL +tan '1/J. PH (3 .26) 

where a~ RI AL is defined by 3.20 and '1/J is the dilatation angle defined by: 

. t. 3. (1- 2. (1- d) .v71 ) 
tan ~ =--~--~--~~~ 

2. (1 + (1 - d) .v71 ) 
(3 .27) 

where I.J71 is plastic Poisson 's ratio and d the damage variable of the previous step. 
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Here the damage variable is included in the dilatation angle so as to translate the variation 
of plastic Poisson 's ratio observed during the experiments. 
A 3D representation of the plastic potential is given in Figure 3.11. 

Figure 3.11: 3D representation of the plastic potential. 

As the return vector is obtained by differentiation of the plastic potential a special atten­
tion has to be made between smooth and apex cone return. The smooth return vector is 
obtained by 

= 3 s 
Nd= 2· J3.J2 (s) 

= tan 'tf;= 
Nv = -

3
-.J 

(3.28) 

(3.29) 

where Nd and N v are the counterpart of deviatoric stress and hydrostatic pressure to the 
return vector respectively. 

Figure 3.12: schematic representation of the apex derivation problem. 
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The apex return vector is more complicated than the smooth one due to the discontinuity 
at the apex of the cone [42]. It has been theoreticaly proven that the solution of this 
derivation problem is contained in a complementary cone as illustrated in Figure 3.12. 
Applying workguidelines provide from [42] the return vector to t he apex is determined 
by: 

(3.30) 

(3.31) 

where Nd and N v are the counterpart of deviatoric stress and hydrostatic pressure to the 
return vector respectively. 
As illustrated in Figure 3.13a the choice of the appropriate return vector is realized hy 
determining the sign of the following relation: 

(3 .32) 

Th en the two kiuds of ret urn vectors are shown in Figure 3.13 b . 

a 

- - - - - - yield criterion 

UT RI AL plastic poteutial 
n+l 

returu vector 

" •• - G.A"f < 0 ~--······ ·· ···· ··· · 

a) b) 

Figure 3.13: a) selection of the appropriate retum vector and b) resulting return vectors. 

3.5.3 Description of the yield return for the shear and compres­
sive loadings 

For the shear and compressive loadings , t he assumption of no damage evolut ion is made, 
so classical plasticity theory is used . The effect of the classical plasticity them-y is focused 
on the formulation of the return vectors. As explained in Figure 3.10 the return vector 
as to be fully deviatoric to madel an isochoric plasticity. From the previous formulation 
explained in paragraph 3.5.2 in which the return vector is expressed 

(3.33) 
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The deviatoric part of the return vector Nd is equal to: 

(3.34) 

and the volumetrie part N v is equal to O. A summary of the retum vectors for tensile, 
shear and compressive loadings is given in Figure 3.14. 

------ yield criterion 

_______ 1 
t --------

---plastic potential 
return vector 

' 

Figure 3.14: return vectors for the tensile, shear and compressive cttSes. 

3.5.4 Description of Newton-Raphson algorithm 

The return to the yield surface is performed by using the implicit closed point method 
[42] [44] (Figure 3.15). 

TRIAL 

On+l 

<l> (O,EpJ= O 
elastic domain at tn 

Figure 3.15: illustration of closed point method. 
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The computation of the plastic multiplier needed to determine the equivalent plastic strain 
is carried out with a Newton Raphson algorithm. Here the description of this algorithm is 
only realized for the smooth return vector of the plastic potential and for the tensile-shear 
of yield criterion. 

Figure 3.16: Newton Raphson algorithm schema. 

At the beginning of the Newton Raphson algorithm, the plastic multiplier 6..1 is set to O. 
Then the evolution of 6..1 is computed following 

(3.35) 

where k is the current iteration of the Newton Raphson algorithm and tlry is computed 
by 

tl . _ </>cons 
l- ÔI/Jcons 

at:., 
where <Peons is the consistency relation defined by 

(3.36) 

( 
TRIAL ) ( tan ({JI)) ( ) </>cons= O"eq- 3.G.tll + tan/31. PH -K. tan 'if; - 1 + 

3 
. 1- d .O"t(n+l} 

where G is the shear modulus defined by 

G = E. (1- d) 
1+v 

and I< is the bulk modulus defined by 

I< = E. (1- d) 
3.(1- 2.v) 
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The derivative of the consistency relatiou by the plastic multiplier is fonnulated as follows 

Oc/Jcons = _ 3 G _ t _ fJ Kt ,/, _ ( 1 +lan (fJJ) ) (1 _ d) OCJt(., + l l 
at::..Î . J an 1· . au 'P 3 . . at::.. Î (3.40) 

The derivative of the plastic behaviour law by the plastic multiplier is not realize analyt­
icaly but numerically (Figure 3.17). 

Equivalent plastic strain 

Figure 3.17: illustration of numerical derivation of tensile plastic behaviour law. 

The equivalent plastic strain is theu upclated using 

(3.41) 

The plastic behaviour law is then updat.ed and consistency relation too. Until the conver­
gence criteriou (equation 3.39) is not reached , the iterative Ne\vton Raphson algorithm is 
usee!. 

(3.42) 

3.6 Results update 

If the rnaterial is cousidered purely elastic. Stresses are updated with t he elastic prediction 
as follovvs 

= _=TRi AL+ pTRiAL =J 
O"n+ l - S H · · (3.43) 

If plasticity is developpee! then the stresses are updated by usiug the following expression 

( 
E. (1- d) i::J. Î ) =TRI AL ( TRi A L E. (1- d) ) 

1 - 3. ( ) . TR I AL .a + pH - , ( ) . tan 4;. f::.. Î . 
2. 1 + V 0" eq 3. 1 - 2.1/ 

(3.44) 
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The elastic strains are also updated by using a ratio of the previous relation 

= ( (1 +v) 3 /1"( ) =TRIAL ( (1- 2.1.1) TRIAL 1 ) = 
E:en+l = E. (1- d) - 2' O"'[gRIAL .0" + E. (1- d) .PH - 3' tan 'lj;./1"( .1. 

(3.45) 
The damage parameter is updated using 

(3.46) 

where the damage increment D..d is computed as follows 

D..d = d (TJt, Ëp (t))- d (TJt, Ëp (t- D..t)). (3.47) 

As shawn is Figure 3.18, this kind of damage update avoid a jump in damage evolution 
and ensure the stability of the calculation. 

... llt .. ~ 112 
~! 

"ïj 

.$ 
~ ...... 
~ 
> 
~ 

llt < 112 ~ 
~ 

0 

Plastic strain 

Figure 3.18: illustration of damage update technique. 

3.7 Summary of the mesoscopic behaviour madel im­
plementation 

The algorithm implemented into the subroutine VUMAT is represented in Figure 3.19. 
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t+ll.t 

Figure 3.19: algorithm of the implemented behaviour model. 

3.8 Conclusions 

This chapter brings the complete description of the material madel used in the mesoscopic 
FE analysis. This model is able to capture ail the mechanical behaviour specificities 
of the considered toughened epoxy adhesive identified in Chapter 2. This is possible 
by combining a visco-elastic madel followed by a hydrostatic pressure dependent yield 
criterion. The non-isochoric plasticity is tackled by a non-associative plasticity and a 

Experiments and models until failure of bonded joints for crashworthiness 



3.8. Conclusions 69 

triaxiality stress ratio dependent damage model. The full model is implemented into 
ABAQUS explicit code through a user-material subroutine and is available for volumic 
elements. 
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4.1 Literature study and proposed n1odels 

The main limitation of modeling bonded joints in finite element simulations in industrial 
context is focused on the time step used in explicit calculations. This time step is evaluated 
with the classical criterion of Friedrichs and Levy 145]: 

t::..l = !.[!1 (4 .1) 

where l is the shortest length of the considered element , p its volumic mass and E its 
elastic modulus . 
In the particular case of a typicaJ crash box in steel (Figure 4.1), a typical industrial 
approach could lead to use the mass scaling to artificially increase the volumic mass to 
reach the time step of steel shells . A such approach leads to an increase of ~ 200 % of 
adhesive volumic mass and results into a non-physical representation of bonded joints. 

Steel shell 5 mm 

60 mm! 

Adhesive volumic 

Figure 4 .1: typical crashbox configuration . 

To avoid this problem some special purpose elements have been designed on the basis of 
the spring element (Figure 4.2) , which its time step is defined by 

t::..t = 2. 
m 1 .m2 1 

rn 1 + m.2 · k 
(4.2) 

where m 1 , m 2 are the masses at the spring boudaries, kits rigidity and m 1,2 , k are defined 
hy: 

1 
rn, ,2 = rn8teel + 2.rnadhesive 

k = A.E 
l 

(4.3) 

where msteel is the mass of the connected steel element , rnadhesive the ma.ss of the adhesive 
element , A its cross-section area and l its length . 

k 
illi~ill2 

Figure 4.2: representation of spring element. 
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An application of the spring element t ime step is given in Table 4.1, this table shows the 
difference between the t ime st ep obtained wi th a classical volumic element and wit h t he 
spring one. The advantage of t he spring element t ime step is then clearly highlighted. 

A le- 6 111 

E 2.5e9 Pa 
0.3 111111 

Spring element Volumic element 
Time step (in J-LS) 1.9 0.2 

Table 4. 1: adhesive element propert ies and related time steps. 

In addi t ion of classical spring element, this t ime step formulation is also used in interface 
elements [46] due to the small or non-existent thickness of the elements . ln the interface 
elements [471, the stress tensor is reduced to (Figure 4.3): 

( 4.4) 

where an is t he normal stress to the interface and T11 , T t 2 t he tangent ial stress to the 
interface. 

a 

a) b) 

Figure 4.3: a) representation of stress tensor in an interface element and b )justificat ion 
of interface elements . 

Before to present t he available interface elements in the literature , t he 111odeling of bonded 
joints as interfaces has to be justified . Firstly, the thickness of bonded joints ( typically 
0.3 mm) can be totally neglicted in face of a crashbox length (typically 300 mm ) and of 
course in face of a car length ( 4-5 m) . In addition to these geometrica.l considerations, 
in t he case of a normative single lap joint t est (Figure 4.3) t he deformation which occurs 
in steel sheets does not take place on top and bot tom of bonded joints. So t he stresses 
and strains which occur in the bonded joint plane can be totally neglicted because no 
deformation of adherents will occur and then there is no effect of t he adhesive Poisson 's 
ratio. 
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The interface elements used in literature to model the bonded joints are generall~· the 
cohesive zo11e moclels. These cohesive elements are divided into two families (Figure 4.4): 

• the discrete cohesive zone models (DCZM) , 

• the continuum cohesive zone models (CCZM ). 

The difference of these two kiuds of models is focused on their ·geometries·. in oue hand 
there is the DCZ:t\1 14 . 49] which represents the bonded joints \Yith springs and on the 
other hand the CCZ.\1 150. 51] represents the bonded joints by a volume. 

{ Steelshell 

Adhesive DCZM 

Figure 4.4: difference between discrete and cont inuum cohesive zone moclels. 

The DCZl'v1 and CCZM also cliffers from their traction-separation lmvs. The tract ion­
separation law of a DCZ 1 or CCZM defines the b haviour and failure of the adhesive 
interface. A simple comparisou with the attraction and repulsive between two atoms 
explains the principle of a traction-separation law (Figure 4.5). Until the maximum force 
Fm is not reached , the deformation proc ss is reversible but after this maximum force , 
the phenomenon is irreversible but each atom still feel the attraction force of the other. 

F 

d 

Figure 4.5: illustration of the principle of a traction-separation law. 

Based on this principle, different traction-separation law are available in the literature for 
the DCZM and CCZM moclels. The traction-separation laws of CCZM are obtained by 
differenciation of a cohesive potential cjJ depending of the slidiug and opeuing displace­
ments bn , bt 152] . For the DCZM models the traction-separation laws are not obtained by 
the differenciahou of a cohesive potential but are clefined following classical mechanical 
properties. So depending on the material properties . different traction-separation laws 
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are available in the literature. For the brittle materials. a classical triangular law is de­
fined (Figure 4.6a) in which the ma terial is then considered as purely elastic 153]. For 
the ductile materials, a traction-separation law (Figm e 4.6b) with a pseudo-plasticity has 
been designed by Tvergaard et al [541. 

a 

a 

a) b) c) 

Figure 4.6: traction-separation laws for a) brittle , b) ductile materials and c) equivalent 
formulation. 

Some DCZ 1 and CCZl\1 models are not defined on 3 independent springs like classical 
interface elements but use an equivalent formulation (Figure 4.6c). In these elements , the 
traction-separation law is then a function of an equivalent opening displa.cement À defined 
by: 

(4 .5) 

where bnc, btc and b7 c are the critical opening and sliding displacements . 

The classical properties of such elements like elastic modulus (E) and the peak 
stress (ô-) can be ident ify on classical bu tt joint tests (Figure 4. 7) and the failure energies 
(Gr 111 ) are classicaly ide11tify on pre-cracked specimens. Although this identification can 
be realize directly on experiments using the t heory of linea.r ela.stic fracture mechanics 
for the brittle materia.ls or with the non-linear fracture mechanics for the ductile ones 
or numerically using J-contour integrale techniques. they always lead to a complex 
identification technique ''vith high leve! hypothesis. 
In this work, a new cohesive element is then proposed based on the time step of the 
spring element and using 3 independant springs (Figure 4.8) . On the basis of an interface 
element , the main mecha.uical properties of a toughened epoxy adhesive are taken into 
account: 

• elastic moduli and yield difference in tension/ compression, 

• hardening visco-plasticity, 

• damage evolution. 
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a 
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a cng 

8 
a F 

1\ a -------------

E eng 5 d 

Figure 4. 7: cohesive elements properties identificat ion. 

a 
- ndamaged law 

- Damaged law 

Compression 

__ ........ -·· 
.. .... -------- ----------

--- - Strain rate effect 

'-------~~E '-------~.-E 

Figure 4.8: uev,r cohesive clement properties. 

Tension 

Shear 1 
- Shear 2 

l\lloreover the element eliminat ion is handled with a physical aspect (Figure 4.9) , the peak 
stress is defined as the crack initiation and the decreasing stress is theu translated as the 
crack propagates through the element . 

a 
Crack ilùtiation 

•lill 

Crack propagation 

7 elem;1t 

1 
Figure 4.9: crack propagation through an element. 

In terms of properties identification, the classical properties like elastic moduli , visco­
plasticity and damage are identified on bulk adhesive specimens (Chapter 2) using a 
simplify analysis. The failure ini tiation and propagation are theu identified on assem­
blies tests like double lap joints tests for shear properties and double U tests for tensile 
properties. 
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4.2 User-element in1plementation 

4.2.1 General description of finite element hnplementation 

The proposed cohesive element is implemented in ABAQUS explicit FE code. In ABAQUS 
explicit, the cohesive element is implemented into a Vectorized User Element (VUEL) 
subroutine, this subroutine gives an access to each step of the explicit finüe element 
computation. In equation (4.6) the mass matrix MNJ and nodal forces F(~) have to be 
provided by t he user. For the equations (4.7) and (4.8): the crit ical time tep has also to 
be provided by the user. 

··N ( ~INJ)-l(pJ FJ) 'IL(i) = 11 (i) - (i) 

N N A ·N 
u(i+l ) = u (i) + wt(i+ I)U (i+~) 

Then each step of t he VUEL is described in Figure 4.10. 

î 
.§ 

Jniti.al.isation 

r-r===;;o::=::=:~!:l- -----ë<~~~~.;: ;:-l~n;c'iit--

î 
!1 Internai forœ:s ~mbling 
§ 
§ 
~ .___ _____ ... 

impiC'n\C'nU\t 1011 

~'---------~ 

Figure 4. 10: flowchart for the implementation of the cohesive element . 
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4.2.2 Mass matrix computation 

In explicit software, the mass matrix has to be provide under a diagonalized form and 
its computation is only performed one time at the beginning of the simulation. The 
diagonalized form is needed so asto accelerate the computation. So as to circumscribe 
the time needed for the diagonalization of a classical mass matrix (equation 4.9), the 
lumped matrix technique is used [55]. 

IYINJ = k Nr pNdn (4.9) 

where N is the matrix of the shape function of a classical 8 nodes element and p the 
density of the adhesive. 
The lumped matrix technique defines a diagonalized matrix by the sum of each row as 
described in equation 4.10. The error made with this kind of calculation is important if 
during the simulation the mass matrix is updated [55]. 

L: .i\1"(i, :) 0 

Jv[NJ = 2:.: l\II(i, :) 
(4.10) 

0 L: .i\1"(i, :) 

4.2.3 Local covariant basis computation 

A local basis inside the cohesive element is needed to obtain the displacements feels by 
the element. For th at a local covariant basis (Figure 4.11) is used. 

Figure 4.11: illustration of local basis. 

In this basis, a shell is defined in the middle plane of the element. In this plane a position 
vector is defined as: 

Nb 

8(6,~2) = L Nn(6,6)sn (4.11) 
n=l 

where 6 , ~2 are the normalized position in the plane ( 0 ::; ~ ::; 1 ), sn the position vector, 
Nb the matrix of the shape function of a classical 4 nodes element. 
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From the position vector s(Ç 1, 6) the two in-plane vectors (a1 , a2 )of the shell are defined 
by derivation of s(ç,, 6) following 

(4. 12) 

The local basis vectors which are normed, are computed from the surfacique element 
vectors following: 

_ fA ih 
rz=--

lla.211 
(4. 13) 

4.2.4 Opening and sliding displacements description 

Like the local basis is defined , the opening and sliding displacements are then computed 
from the projection of the relative displacements in the global basis to the local one. The 
relative displacements are computed follows 

U1 +U2 + U3+U4 u = 2 2 
2 

\11 +~'2 + \13+1'4 
v = 2 2 

2 
(4. 14) 

where U1 ~4 , VJ.__.4 , l;\/1~4 are the relative displacements computed under each pairs of 
nades as illustrated in Figure 4.12. 

By realizing a su ch calculation, the relat ive displacements U, V and W are ob­
tained in the center of the element like a classical computations of an element with one 
Gauss point. 

1 8 

4 ----:----e 

2l ... J 

3 

Figure 4.12: example of relative displacements computations for U and V. 

Th en the opening and sliding displacements ( bn, f>t and br) are obtained by the pro je ti on 
of the global relative displacements into the local basis 

by Da'uid MORIN 



80 Chapter 4. Macroscopic finite element model 

On= [ ~ ] .fi 
w ---x,y,z 

Dt= [ ~ ] .t 
Hl ---x,y,z 

Or= [ ~ ] .T 
w --­x,y,z 

4.2.5 Strains and strain rates computations 

(4.15) 

The tangential and normal strains of the cohesive element are computed from the local 
opening and sliding displacements following 

En = ln(l + :n ) 
y,O 

Dt 
Et= ln(1 +y;-) 

x,O 

Er = ln(1 + ;r ) 
z,O 

(4.16) 

where Ly,o, Lx,o and Lz,o are the initial dimensions of the element as shown in Figure 4.13. 

l-x 
z 

Figure 4.13: illustration of initial element dimensions. 

This kind of strain computations is only valid if the bonded joint is modeled with its true 
thickness and not as an interface (thickness equal to 0). 
The strain rate is computed by a backward finite difference 

..:.. E(t) - E(t-~t) 
E = --'-''-----'----'-

~t 
(4.17) 

where E is computed from 

(4.18) 

with E' the strain tensor defined by 

(4.19) 

4.2.6 Stresses computations 

4.2.6.1 Description of elastic prediction 

With the previous strains (equation 4.16), three elastic predictions are then realized for 
the tluee independent springs following: 
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(4.20) 

where En and Et are the elastic moduli in tension/ compression and shear respective! y. 
Here different moduli are assigned for the tension and compression. 
Following the elastic predictions, three yield criteria are then applied with: 

fn =ayn- an ft= ayt- at fr= ayt- aT (4.21) 

where ayn and ayt are the yield stresses in tension/compression and shear. Here again 
different yield limit are assigned for bath tension and compression. 
To take into account the dependency of the yield stress to the strain rate, the yield stresses 
are formulated following 

(4.22) 

From the experimental observations of Chapter 2, the yield stress in tension and shear 
are assumed to be equal. 

4.2.6.2 Description of plasticity and yield return algorithm 

U ntil the yield cri teri on is reached the yield return is realized by a direct method. Firstly 
the plastic strains for the 3 independent springs are computed following 

ayn 
E:pn =En- En 

Then a correction is applied on the stresses following: 

(4.23) 

ar= ayt + (1- d).ETt.épr 
(4.24) 

where ETn, ETt are the tangent moduli in tension, compression and shear and d the 
damage variable. The damage variable d is updated before the stress corrections with an 
exponential formulation: 

(4.25) 

Here the damage is only dependent of the normal plastic strain due to the hypothesis that 
in pure shear there is no damage evolution. 
The effect of strain rate on the structural hardening of the behaviour law is managed with 
viscous tangent moduli. These tangent moduli are expressed with polynomial approxi­
mations. 

4.2. 7 Nodal forces update 

When the stresses corrections are completed, the VUEL subroutine requires an update of 
the internai forces of the element. The internai forces are updated by a projection of the 
local stresses on each nades (Figure 4.14). 
To prevent the large rotations of the element, an incrementai update of the internai forces 
is realized as follows 
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F. 

Figure 4.14: illustration of nodal forces upda.te. 

[ 

I:J.an ] 
F.-r (t) = Fx(t- !:J.t) + I:J.at .i .Sa.(1 - d) 

I:J.aT - t--n , ,T 

(4.26) 

(4.27) 

(4.28) 

where S0 is the initial resistant section of the element (Figure 4.13) and b.a11 • !:lat and 
b. a 7 the stress increments in the local basis. It could be uot.iced that the damaged section 
is used to update the nodal forces. 

4.2.8 Ele1nent elimination 

4.2.8.1 Failure initiation model 

The failure initiation is detected wit.h a criterion based on the opening and sliding dis­
placements. This criterion is divided into two subcriteria (equation 4.29 and 4.30 ) due 
to the assumption that no crack propagation occurs iu compression. Then, the criterion 
for tensiou and shear loading is defined as 

À i,nit = (4.29) 

where c511 c ,·ü and c5tcri t are the critical opening and sliding displacements . lu case of com­
pressive loading the failure initiat ion criterion is then defined as 

( 4.30) 

A geometrical description of the failure is given in Figure 4.15. 
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Ôn 

a) b) 

Figure 4.15: failure ini t iation criteria in the a) tension; shear and b) compression shear. 

4.2.8.2 Failure propagation mode l 

Once the fai lure is initiated iuside the element , a special a.lgorithm is devoted to the 
crack propagation through t he element . The crack propagat ion through the element is 
represented in Figure 4.16 by the decreasing of ali stresses (here named ad until t hey are 
equal to zero. 

Failure initiat ion 

/ 
Crack propagation 

1 
Total failure 
of the element 

.___----t.:..l _ _.t 

Figure 4.16: illustration of effect of crack propagat ion through an element . 

T he stresses of each springs are decreased usiug: 

(4.31) 

where a iin it and t init are the stress and time at fai lure initiation respectively. As the crack 
propagation through an element is dependiug of it size, a homogeneization parameter 
t,·up is used. This parameter represents the time needed by a crack to cross an element 
(Figure 4.17) and is defined by 

Lx,O 
t r up = V, 

p 
(4.32) 

where Lx,o is t he size of t he element (Figure 4.17) and Vp the crack propagation peed. 
As the crack propagation is dependent of the loading speed , y; is defined by 
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Figure 4. 17: illustratiou of crack propagation through an element. 

(4.33) 

where h is the ratio between equivalent loading speed and crack propagation speed. The 
equivalent loading (Figure 4.18) is defined by 

V eq = l l \l~ql l = ) ;;,
2 
+ j/ + 5r2

· 

where cS, , 81 and br are defin ed by: 

8n = [ ~ ] .fi 

w - - -x .y,;; 

81 = [ ~ l .f 
n' ---x ,y ,:: 

n 

Figure 4. 18: equivalent loading speed . 

( 4.34) 

( 4.35) 

In explicit integration scheme, element elimina tion is always submitted to the question of 
st ahili ty. Although a physical aspect in element elimination is interesting. the numerical 
stability of the computation has to be guaranteed. For that a study on a simple numerical 
test is performed to investigate t he effect of the element elimination on the force response 
of an assemblies. The a. embly (Figure 4.19) is made of two U st eel modeled with. bell 
elements and linked by a macro element of adhesive. In tenns of boudary conditions, all 

Experim ents and models until fa il'uTe of bonded joints fo T cm shwoTthiness 



4.2. User-elem ent implementation 

Steel shell 

Adhesive volume 

block along z 

block along y 

- block along x 

- Loading speed 0.5 s-• 

85 

Figure 4. 19: boundaries condit ions and loading speed applied on tension numerical test . 

displacements and rotations are blocked on the 4 nodes of the U bottom and a speed of 
0.5 m .Ç 1 is applied on the 4 nodes of the U top. 
Theu t.he st ability of the computa tion is studied by looking the reaction force along x axis 
(Figure 4.20 a and b). 

.. 
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TIIM(In • l 

a) b) 

F igure 4.20: reaction force a) until crack propagation through the element and b) after 
the failure of the element . 

It can be noticed that for a given time step, t he stability of the computation after the 
failure of t he element is highly depeud on t he increment numbers (Figure 4.20a and b) . 
Using the time step of this computation, the ratio Il between the crack propagation and 
t he equivalent opening speeds can be easily computed from the number of increment and 
t he width of t he element . Assuming t ha t on the simple study case, 250 increments is 
sufficient to remove the elem ent and ensure a reasonnable st ability, the maximum ratio 
h is then found at approximately 28 (Figure 4.21). This criterion is used as a numerical 
security factor. 
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0 200 400 600 800 1000 1200 
Number of increments 

Figure 4.21: numerical study of the ratio h. 

4.3 Crack propagation through a mesh 

In addition to the propagation of a crack through a mesh, an experimental technique is 
defined in the element to propagate a crack through a mesh. This technique is based on 
two criteria: 

• presence of a crack at the boundary of the element (Figure 4.22 a and b), 

• reaching a mechanical criterion (equation 4.36). 

(4.36) 

with a ::; 1 for a crack propagation using Non Linear Fracture Mechanics. 
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a) b) 

Figure 4.22: schematic representation of boundaries test s a) in face and b ) m normal 
plane of the bonded joint . 

By choosing o. equal to zero the crack propagation is realized like in Linear Elastic Fracture 
Mechanics as Figure 4.23 shows in the special case DCB like t est. 

Specd Joading 

0 

a) b) 

- element n"l 
element n· 2 
element n"3 

- element n· 4 

Figure 4.23 : example of LEFM crack propagation a) DCB like simulation and b ) evolution 
of stresses. 

Although this technique is very interesting wide limitations are always present 

• t he perfect knowledge of the mesh numbering is mandatory, 

• in ABAQUS explicit the munerical test are limi ted to a patch of 136 elements due 
to the black matrix computations. 

Due to these limi ts, the use of this technique of crack propagation through a mesh is only 
suitable for laboratory tests and not for real industrial cases. 

4.4 Properties identification 

4.4.1 Work guidelines 

The propert ies of the macroscopic approach are identified on two different kinds of tests 
(Figure 4.24) 
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• on bulk adhesive specimens (Chapter 2) for the behaviour parameters, 

• on assemblies tests for the failure ini tiation and propagation paramet.ers. 

Figure 4.24: macroscopic approach properties identification guidelines. 

4.4.2 Behaviour properties 

4.4.2.1 Elasticity properties 

The elastic properties are extracted from Figure 2.32 only for high strain rates and are 
summarized in the following table 

Tension Compression 
Elastic modulus (in GPa) 3 2 

Table 4.2: summarize of the elastic properties of the macroscopic approach. 

4.4.2.2 Plasticity properties 

The plasticity properties comes from Figure 2.36 and 2.41 but are analysed with a simpli­
fied approach. The yield stress and its evolution with the strain rate is directly linked to 
the tangent modulus identif-ication (Figure 4.25). The yield stress used in the ma.croscopic 
approach is determined by the intersection of the tangent modulus and the stress axis and 
an error is doue on its evaluation. 
Then following the previous principle, the yield stress in tension (Figure 4.26a) and com­
pression (Figure 4.26b) are identified and mathematical models (equation 4.22 are iden­
tified. 
The corresponding tangent modulus are shown in Figure 4.27 and the same tangent mod­
uli in tension and compression are used. As the shear properties are not identified for 
different strain rates an extrapolation is carried out from the compression data. 
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0 
- Behaviour law 
- Identified tangent modulus 

ldentified yield stress 

~Real yield stress 
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Figure 4.25: identification of yield stress in macroscopi · approach. 
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Figure 4.26: identifiee! yield stresses a11d models for a) tension and b) compression. 
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Figure 4.27: identificat ion of tangent moduli i11 macroscopic approach. 
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4.4.3 Failure properties 

4.4.3.1 Specimens geometries and loading deviees 

The failure properties ( Oncrit, Otcrit,h) are identified on assemblies tests, the tensile proper­
ties on double U specimens and the shear properties on double lap joint specimens. The 
geometries of the double U and double lap joints specimens are given in Figure 4.28 and 
Figure 4.29a and b respectively. For the double lap joints tests, two geometries are used 
so as to be adapted to the loading deviee. 

27 

22 

Side view Front view 

30 

1-

Il) 

CD 
C\1 

Figure 4.28: geometry of the double U specimens. 
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Figure 4.29: geometry of the double lap joints specimens a) in stat.ic and b) in dyuamic. 

In opposition of the double shear lap joint which are directly clamped in the grip of the 
static/ dynamic machine , the double U specimens need a special equipment. This special 
equipment is composed of steel blocks on which the specimens are screwed and two steel 
plates (in multiphase 800) from which the loading is carried out (Figure 4.30). As shawn 
in Figure 4.30, the link bet\veen the steel block and the steel plates is realized with only 
one rotational axis. The advantage of this rotational axis is to limit the moment brings 
to the specimen by the loa.ding. To investigate the effect of straiu rate on the failure 
in assemblies two different loading rates are applied on the previous specimens. The 
corresponding mean strain rate in the bonded joints are computed with equation 4.37 
and are summarized in Table 4.3. 

. v 
Emea.n = L ( 4.37) 

where v is the nominalloading speed and L the length of the bonded joint in the loading 
direction as shawn in Figure 4.31. 
Even if the strain rates in static are different for the tensi le and shear loadings, this 
difference is considered as negligible due to the low sensitivity of the adhesive on this 
strain rate range. 
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Steel plates 

Steel block 
1: 

Figure 4.30: presentation of the special equipment needed for the tensile tests. 

Loading direction d::=======j!L=====:::~ 
Figure 4.31: illustration of the length used for the strain rate calculation. 

Nomiual loadiug speed Mean strain rate (in s - 1 ) 

Double U 1 mm.min- 1 5e-2 

Double U 48 mm.s- 1 160 
Double lap joint 1 mm.min- 1 2e- 3 

Double lap joint 1.6 m .s-1 160 

Table 4.3: Loading rate and correspouding strain rate. 

4.4.3.2 Failure initiation identification and results 

Before to present the results in tenus of failure initiation crüerion , the identification 
protocol has to he described. The opening and sliding displacements at failure initiation 
needed in the macroscopic madel are identified using 2D Digital Image Correlation. An 
illustration of measurement protocol is given in Figure 4.32a for the tensile tests and in 
Figure 4.32b for the shear tests. 
Even if the tensile and shear are supposed as pure tests , the counterpart of the opposite 
displacements (i .e sliding in tension and opening in shear) are taken into account in the 
measurements thanks to the D.I.C. technique. 
As the detection of crack initiation is difficult in this configuration (i.e. small thickness 
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4.4. Properties identification 93 

Before loading Before crack init iation 

Before loading Before crack initiation 

c::J Initial shape C Deformed shape 

D Initial shape 

D Deformed shape 

a) b) 

Figure 4.32: illustration of measurement protocol for a) tensile tests and b) shear tests. 

of joints and low pixel resolut ion) t he opening and sliding displacements are computed 
on 4 pictures in \Nhich t he crack ini t ia tes. As Figure 4.33 shows a mean strain and its 
standard deviation is then computed with the different data. 
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Figure 4.33: illustrat ion of ini t iation displacements computation . 
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The results in tenns of opening and sliding displacements for both tensile and shear test. 
a re presented in Figure 4.34. 

0 ,2 ~ 

E ·~ 
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• 
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VI :a 
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ë 
~0,05 
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. . . 

• Tensile dynamic 
- Uncertainty for dynamic tensile 
• Tensile static 

Uncerta inty for static tensile 
• Shear dynamic 

- Uncertainty for dynamic shear 
• Shear static 

- Uncertainty for static shear 

O+-~~~~~~~~~~-r~~~~~~T-~,-~~~+-
0 0,05 0,1 0 ,15 0,2 0,25 0,3 

Sliding displacement (in mm) 

Figure 4. 34: results in terms of opening and sliding displacements for the different . train 
rates . 

In opposition of the tests on bulk specimens. the strain rate sensivity on the tensile results 
is clearly visible. This un-expected find iug can he explained by t he triaxiali ty stress ratio 
presents in the bonded joints. T he Figure 4.35 shows t he results of a Finit e Element 
simulation of the double U test. A-:; shows in Figure 4.35a. the t riaxiality stress ratio is 
very het erogenous inside the bonded joint . The parti cul ar case of the edge of t he bonded 
joint which is plotted in Figure 4.35b , the t riaxiality stress ratio is always greater thau 0.5. 
The experiments on bulk specimens have shown t hat the strain rate sensit ivity decreases 
wi th higher triaxiality stress ra tio, this proves that resul ts in t ension for assemblies are 
not strain rate sensit ive due to t he geometrical effect on the edge of the bonded joint. 
As for the tensile tests , the results in tenns of opening and sliding displacements for the 
shear test s are very surprising due to the oppo it e tendancy observed in F igure 4.34. The 
opening and slidiug displacements seem to increase with the strain rat e but whit hout 
informations on the behaviour and failure of t he adhesive under dynamic shear loading 
it 's not possible to conclude on this aspect . Even if this resul ts are not yet explained , a 
descript ion of t he heterogeneity of the tri axiality stress ratio in double lap joint tests is 
given in Figure 4.36. 
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- Element n• 1 
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b) 

Figure 4.35: a) cutted v1ew through the thickness of the bonded joint m tension and b) 
evolution of the triêL'<iality stress ratio in fun ction of the time. 

As for the double U specimens, the triaxiality stress ratio is very heterogenous inside the 
bonded joint (Figure 4.36a) and its evolution in function of time shawn in Figure 4.36b 
proves that its magnitude is never to O. So as the triaxiality stress ratio is mainly greater 
than 0.4 the geometrical effects should be dominant. 
As the geometrical effects are suspected to be predominant , the final failure initiation 
madel is then identified on the static experimental data as shawn in Figure 4.37. The 
identification of the initiation criterion returns 8, equal to 103 f..L711 and Ôt equal to 226 f..Lm · 
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Figure 4.36: a) cu tted view through t he t hickness of the bonded joint in shear and b) 
evolut ion of the tri axiali ty stress ratio in fun ction of the t ime. 

4.4.3.3 Crack propagation identification and results 

The crack propagation is ideutified directly on the image sequence capt ured by t he 
CCD / CMOS captor. In these sequences, the visible crack tip is followed on the different 
images as shown in Figure 4.38. Although the crack t ip displacement is not straight in 
the middle of the bonded joints only the projection of this displacement on t he x axis (the 
width of the bonded joint ) is taken into account (Figure 4.39). 
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Figure 4.37: identification of the failure initiation criterion . 
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Figure 4.38: crack tip displa.cement identification. 
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Of course ali these measurements are only valid if the crack tip is considered as straigth 
as shawn in Figure 4.40. 

Due to the complexity of t he identification of the crack tip displacement , these measure­
ments are only limited to the double U tests. As a consequence of this choice the crack 
speed computed may be overestimate for the mode II / III crack propagation . 
The crack t ip displacernents ident ified on a selection of specimens are shown in Figure 
4.41. These curves show high dispersive responses in tenns of slope which translate differ­
ent crack propagation speed but also different crack propagation progress. For example 
on the p t crack of t he specime11 n°7, the crack displacement is quasi constant and could 
be associated to elastic fracture mechanics. In opposite the major part of the studied 

by David MORIN 



98 Chapter 4. Macroscopic finite element model 

Adherent 
Crack 

Adhesive 

Adherent 

Figure 4.39: illust ration of the crack tip displacernent measurement. 

- Real crack tip 

Idealized crack tip 

Figure 4 .40: id<:>alization of the crack tip . 

specimens show a discontinous crack propagation "hich is related to inelastic fracture 
mechanics phenomena. 
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Figure 4.41: result ::; in tenn of crack t ip displacements. 
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From the curves presented in Figure 4.41 the crack propagation speeds are extracted by 
realizing linear interpolation as shown in Figure 4.42. On each tests 3 crack propagation 
speeds are identified following the previous principle. 

5 

..... Experimental data 
- l n crack speed 0,56 mm.s·1 

- 2n<1 crack speed 0.48 mm.s·1 

- 3 rd crack speed 0,19 mm.s·1 

2 4 6 
Tlme (ln s) 

8 10 

Figure 4.42: crack propagation speed identification . 

12 

Due to the fa ct t hat the crack propagation speed is dependent of the loading speed of the 
bonded joints (i.e. more faster is the test more faster is the crack propagation) t he crack 
propagation speed hac:; to be identified in the function of t he equivalent opening speed 
(equations 4.34.4.36). Unfort una.tely t his equivalent opening speed is also funct ion of t he 
widt h of the bonded joints and t he double U do not have t he same width so a normative 
variable has to be chosen. Finally, t he normative variable chosen is the rat io betweeu 

by David MORIN 



100 Chapter 4. Macroscopic finite element model 

t he equivalent opening speed and the widt h of the bonded joint. \Vith this variable the 
evolution of the crack propagation speed is then plotted in Figure 4.43 . 
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Figure 4.43: crack propagation speed Ü1 function of the normative vari able. 

B,v discarding the compnted crack propagation speed v,rhich seem to he erroueous (greater 
th an 0.2 mnLÇ 1

) , the ratio Il (equation 4.33) is then equal to 213 for a bouded joints of 
1 mm . 

4.5 Conclusions 

This chapter briugs the complete descript ion of the macroscopic approach used in this 
t hesis. This mode! is based on t he t ime step formulation of a classical cohesive element. 
In addit ion of the existing cohesive element of the li t t eratme. this mode! brings the 
possibility to represent the different behaviour in tension and compression iu terms of 
elasticity as weil a.s the plasticity. It also provides a simplified visco-plasti city enhanced by 
a damage mode!. T he failure ini t iation is tacklecl by a criterion based ou the opening and 
sliding displ acements which ini t ia te a crack on au edge of the bouded joint. The element 
elimination is tacklecl using an innovative technique which represent t he eliminatiou as a 
crack propagation through t he element. An experimental technique to propagate a crack 
is also present but is very limited for t he moment due to some problems linked to t he 
current finit e element software. The behaviour properties of this mode! are identified on 
the previous bulk specimens (Chapter 2) bu t with a simplified analysis. Finally the failure 
initiation and crack propagation properties are identified on assemblies using 2D Digital 
Image Correlation technique. 
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4.6 Models parameters summary 
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E 
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·n 
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Yield stress 
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Figure 4.44: surnmary of macroscopic rnodel parameters. 
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The aim of this chupter is tv present numer'ical validations of the m esoscopic and 
macroscopic finit e elem ent models. These validations aT"e carr-'ied out on three differ·ent 
experimental tests. These experimental tests are based on gradually cornplex loadings in 
or·der to check the accumcy of the proposed rnodels on different levels of difficulty . H·om. 
these results, an adapted modeling stmtegy is then proposed. 
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5.1 Presentation of the different structures 

To provide a pertinent evaluation of the mesoscopic and macroscopic models the corre­
lation between experimental and numerical responses are realized for different loadings. 
The accuracy of both models is checked with a high strain rate double U test which brings 
a mode I load on the bonded joint (Figure 5.1a). An innovative test called dynamic flexure 
test is designed to bring u mode I/ II load ou t he specimen at high strain rates (Figure 
5.1b). The combina tion of mode I; Il and mode III is given by a dynamic axial crushing 
of crashboxes (Figure 5.1c). These crashboxes are realized wi t h different assembly tech­
niques as mentiommed in Chapter 1. To keep a cout iuuity between the ident ification of 
the macroscopic failure criterion , the same grade and thickness of st eel is choseu , so a DP 
600 wit h a thickness of 1.5 mm . 

V = 16 m/s 

Mass = 350 Kg 

V= 7 m/s 

High strain rate double U test (mode I) 

! V = 16 m/s 

1 
M· t~-------....... ~ 1 t • 

Dynamic flexure (mode II / mode 1) 

Dynamic axial crushing (mode I / mode II / mode III) 

Figure 5. 1: description of experiments and load complexi ty. 

An analysis of the ratio between the quality of t he results and the computation times is 
also given for each load complexity and a modeling strategy of bonded structures is finally 
g1ven . 
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5.2 Prerequesite to the finite element modeling of 
bonded structures 

5.2.1 Mesh size and link between steel and adhesive 

As explained in Chapter 3, the steel adherents are modeled with shell elements. These 
shell elements are chosen as reduced integration and the default option with ABAQUS 
explicit is used for the thickness integration (5 points and the Simpson rule). The mesh 
size of the steel adherents is adapted to the experiments and size of the elements are 
summarized in table 5.1. 

Experiment Element size (mm) 
Double U 0.5 

Dynamic flexure 0.5 
Dynamic crushing 5 

Table 5.1: summarize of the shell element sizes. 

In addition on the steel mesh size, sorne informations have to be given on the mesh size of 
the adhesive. As for the steel shells, the size of the volumic or macroscopic elements are 
adapted to the experiments (Table 5.2). As the opposite of the shell elements which are 
chosen as square, the volumic or macroscopic elements are not purely cubic. This choice 
is realized only to limit the number of elements in the F-E simulations. 

Experiment 1st side (mm) 2nd si de (mm) thickness (in mm) 
Double U 0.5 0.5 0.3 

Dynamic flexure (1 element) 0.5 0.5 0.3 
Dynamic flexure (3 elements) 0.5 0.5 0.1 
Dynamic crushing (1 element) 5 5 0.3 
Dynamic crushing (3 elements) 5 5 0.1 

Table 5.2: summarize of the adhesive element sizes. 

As mentionned in Chapter 3, the steel adherents are modeled with the neutra} axis of 
the shell elements so an offset between this axis and top surface of the adhesive element 
is made. This offset is made for the mesoscopic madel with a tie constraint available 
in ABAQUS explicit which keep a constant distance between the shell and the volumic 
element (Figure 5.2). For the macroscopic madel, the use of user element in ABAQUS 
does not allow the tie constraint so another technique is required. To numerically 'bond' 
the macroscopic element to a shell element, an artificial link between coïncident nades 
is realized by coupling the translationnal degrees of freedom of the shell nades to the 
volumic nades (Figure 5.2). 
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Master surface Master node 

lave node 

Slave surface 

Figure 5.2: numerical link hetween steel and adhesive. 

5. 2 .2 Steel material p r operties 

For ali t he computations, the steel material (DP 600) is considered as visco-plastic with 
true stress / true plastic strain curves given on a tabulated way (Figure 5.3) . Its plasticity 
is computed following the classical von Mises plasticity (J2 plasbcity) theory. 
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Figure 5.3: true behaviour laws for the DP 600 steel. 
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5 .2 .3 Failure criterion of adhesive in mesoscopic model 

As for the mesoscopic moclel, a mesh sensit ivity through t he thickness of the boncled joint 
is clone. An evaluation of the failure moclel parameters on the failure cri terion have to be 
made. Indeed , it is a well-known fact that the failure strain is dependent on the length of 
the element in F-E simulations. By using D.I .C. techniques to ident ify the failure strains, 
this problem is also present. The step size (distance between two correlation zones) of 
D .I.C . is then equivalent to t he fini te element length. An illustration of t he problem linked 
to the step size is given in (Figure 5.4) . 
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- step 3 px 
- step 4 px 0 ,15 

- step 5 px 
- step 6 px 
- step 7 px 

!::0,14 

"' - step 8 px 
- step 10 px 
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c 
~ 0, 13 

~ 0 . 12 

~ o,O.ll 
c 
0 
... 0.1 

0.5 1 1,5 2 2 ,5 3 
Position ln the notch (ln mm) 

Figure 5.4: eftect of step size on t he failure strain computation in D.I. C. 

As the failure cri terion ident ified in Chapter 2 is based on 0.3 mm step size, a rat io has 
to be applied on it so as to be valid wi t h smaller elements. This ratio is determined by 
iclent ifying the eftect of the step size on an experimental strain distribut ion and is applied 
on t he a1 function of t he failure criterion (2.31 ) (Figure 5.5). The strain rate dependency 
described by the b 1 function is by defini t ion not affected by the step size. F inally different 
parameters are found and have to be used in adequation of t he mesh size. 
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Figure 5.5: evolut ion of the a1 fu nction in function of t he mesh size. 
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5.3 High strain rate double U test 

5.3 .1 Description of experiments 

The mode I test is achieved on the same double U geometries than in Chapter 4. The 
main difference is fo cused on the loading speed , which is closed to 7 m .Ç 1

• To obtain 
this loading speed a set of direct tension Hopkinson bars is used (Figure 5.6). These 
Hopkinson bars a re constitued of two steels bars loaded on the end of the input bar by 
an tubular impact or made in almninum. The force and displacements measurements are 
achieved through the strain gages bridges placed on both input and output bars. 

Sliding imp actor 

~ l m 
Input bar 

~ 
Specimen 

/ 
Output bar 

/ 
5.8m 4m 

a) 
Hopkinson ba rs 

b) 

Figure 5.6: presenta tion of the Hopkinson bars. 

5.3.2 Description of numerical simulations 

Due to the symmetries of the system, only a quarter of the specimen is modeled (Figure 
5. 7). On this madel, the lower part is considered as fully fi.xed i. e. all degrees of freedom 
are equal to zero. The upper part of the mode! is loaded by a speed ramp (Figure 5.8). 
This ramp is identifi.ed on the difference between input and output bars speed . 
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Figure 5.7: FE model of the double U test. 
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Figure 5.8: identification of the speed ramp. 
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5.3.3 Correlation between nu1nerical and experimental results 

To correlate the numerical results to the experimental ones, only the force displacement 
curves are used due to the complex specimens geometries. A major difference is observed 
between t he experimental and numerical curves (Figure 5.9)- This difference is not a 
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numerical error but comes from t he experiments. Indeed. a geometrical discont inuity 
is present between t he specimen and t he input and output bars (Figure 5.10). These 
geometrical discont iuui ties imply a lower force rise in the specimen . 
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- Mesoscopic model 
- Macroscopic model 

0,0015 0,002 

Figure 5.9: experimental and numerical force displacement curves. 

Output bar 

Interfaces 

Figure 5.10: discont inuities problem between specimen and Hopkinson bars . 

By skipping this force ri se problem. the numerical and experimental curves show a good 
correlat ion (Figure 5.11 ). For bot h macro and mesoscopic models , the average force 
during t he test is well described. In addit ion , the fai lure of the specimen appears to be 
well predicted on t he global displacemen value. 
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Figure 5.11 : experimental and numerical curves for force displacemeut . 

5.4 Dynamic flexure test 

5.4.1 D escription of experiments 

The innovative dynamic flexure t est is realized on a ballistic tube (Figure 5.12). The 
innovation realized here is to use a perforation deviee for a dynamic flexure test . This 
flexure test is realized on a normative single-lap joint specimen originally designee! to 
evaluate the shear properties of boudee! joints. Specimens which are presentee! in Figure 
5.13, are screwed directly on the steel t ube (Figure 5.12). Then t he measurement of t he 
force is realized usiug the ela.stic wave propagation in the t ube. This measurement is 
achieved using full strain gage brigdes, here two bridges are usee! so as to obtain a double 
measurement (Figure 5. 12). The flexure loading is obtained by an impactor launched 
through a guide by a comprimee! air deviee. The displacement of t his impactor is measured 
by an electro-optical extensometer (Figure 5. 12). 
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Comprimed air tank 

Specimen 's locking system 

13 mm[: 

130 mm 

Full strain gage bridge 

Specimen (length 130 mm) 

Low speed = 16 m/S 
High speed = 70 mjs 

Figure 5.12: presentation of the ballistic deviee. 
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Figure 5.13: geometries of the specimen. 

5.4.2 Description of numerical simulations 

The proposed mode! for the dynamic flexure test is described in Figure 5.14. The boundary 
conditions of the specimen are simplified to a cla.mped configuration on the internai radius 
of the tube (red lines). Here again , a symmetry is used to reduce the time of computation 
(green !ines) . The impaetor is represented by an analytical surface considered as rigid. 
This impactor is moved by an imposed displa.cement (measured experimentally) and a 
ma.ss of 72 .65 g is a.dded to represent its real weight. Here agai11 the tangential friction 
coefficient is set to 0.3 by a penalty method. 
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-- Encastre 
- Symmestry 

Figure 5.14: dynamic flexure simulation setup. 

5.4.3 Correlation between numerical and experimental results 

As results on these tests , only t he force displacement can be used to correlate the numerkal 
and experimental responses. The numerica.l forces are computed on the clamped lines of 
the specimen and a factor 2 is applied to represent the total load of the real specimen. 
The experimental results in terrns of force are very noisy (Figure 5.15) so the correlation 
is realized on the chosen typical sample. This noisy response is directly related to the 
geometry of the measurement tube. Indeed, the specimen is clamped to the tube through 
an holed steel plate which is welded to. AU this geometries discontinuities create wave 
reflexion and then noise 011 the signal measured by the strain gages. 
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F igure 5.15: experimental forces measured on the tube. 

So as to match to the chosen typical sample, its displacement is imposed to the impactor. 
In order to avoid the numerical problems linked to the explicit schema, a polynomial 
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approximation is realized on t his displacement (Figure 5.16) . 
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Figure 5.16: filt ering of the displacement of the impactor. 

For both macro and mesoscopic models, a goocl correlation is found at the begin of the 
test (up to 60 p,s) (Figure 5. 17) . After that only the mesoscopic model is able to predict 
the good strength of the specimen . The effect of the mesh refinement is detailed in Figure 
5.18 in which the difference between an one element through thickness and a 3 elements 
t hrough thickness is given. From these curves , the effect of t he mesh refinement allows a 
bett.er description of the global response but with au iucreasc of the computation time as 
it will be discussed later in this paragraph. 
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Figure 5.17: comparison between macro and mesoscopic rnodels on the force-tirne curve 
of the typical sample. 
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Figure 5.18: effect of the mesh refinement through thickness. 
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A qualitative study on the failure is a.lso realized on the refined mesh . It appears that 
the tmmerical crack initiation is well predicted in terms of geographical position in the 
bonded joint but also into the thickness (Figure 5.19 , 5.20) . T he failure initiation into the 
thickness is correlated with the experimental failure facies \vhich are cohesive superficials. 

Figure 5.19: numerical crack initiation on the dynarnic flexure test. 
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Init ial condition 

Crack initiation 

Figure 5. 20: experimental crack initiation on the dynamic flexure test. 

In addition to t he difference. highlighted on the previous figures (Figures ?? ). it also 
iuterest ing to compare the computat ion time between these calculations. Of course. t he 
use of a refined mesh into t he thickness brings a bet ter correlation but an increase of 300 
o/c of the computation time is needed compared to 1 element mesh or the macroscopic 
mode! (Figure 5.21 ). The gain in t erm of t ime wheu using t he macroscopic rnodel is very 
small (a few seconds) in face of the loss of quality in the response. 
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Figure 5.21 : summary of t he computation times for the different models. 
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5. 5 Dynamic axial crushing test 

5.5 .1 Description of experin1ents 

The dynamic axial crushing tests are realized at ARCELORMITTAL Maizières les Metz 
on a middle capacity catapult (Figure 5.22). To obtain a dynamic axial crushing loading. 
a mass impactor is launched on a rail at 16 m.Ç 1 on a crashbox (Figure 5.22). This 
crashbox is fixed on a rigid wall through the force acquisition system. This system is 
composed of 4 piezo-electric cells placed in parrallel for a total capacity of 1200 kN. The 
displacement of the impactor is measured with a laser captor placed on the rigid wall. 

Comprimed air tank Impactor (mass 350 Kg) Crashbox's locking system 
speed 16 m/s 

Figure 5.22: presentation of the dynamic axial crushing test . 

Three kinds of crashboxes are realized in ARCELORMITTAL Montataire wi th different 
combinations of assemblies: 

• 10 spotwelds 

• 10 spotwelds + bonding 

• 5 spotwelds + bonding 

• bonding. 

Except for the only bonded structures which are rea.li zed wi th a continuum bond line, 
the spotwelded and bonded crashboxes are realized with a discontinous bond line (Figure 
5.23) . This discontinous bond line is chosen so as to avoid expulsion of matter during 
the format ion of the spotweld . The spotweld of the different crashbox configuration are 
realized on a Langepin spotweld machine at defiued places as shawn in Figure 5.24. 
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Figure 5.23: discontinuous bond liue. 

Places of spotwelds 

Figure 5.24: spotweld machine and places for spotweld. 

5.5.2 Description of numerical simulations 

The dynamic axial crushing tests are simulated as shown in Figure 5.25. Only an half 
of the crashbox is simulated using a symmetry (green line), in tenns of clamping a 15 
mm length region is clamped (red !ines) so as to represent the real conditions. The mass 
impactor is represented by au analytical surface considered as rigid . This impactor is 
launched with an initial velocity of 16 m.Ç 1 and a mass of 175 kg is added to represent its 
real weight . Here again the tangential fri ction coeffi cient is set to 0.3 by a penalty method . 
As no failure is observed for the different spot-weld ,s a simple tie between t he upper and 
lower shell steelnodes is realized (Figure 5.26). The simulations of the spotwelded and 
bonded specimens are realized with only one element through the thickness except for the 
only bonded specimens on which a sensihility of the mesh refinement is performed . 
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Impactor 

-- Encastre 
Symmestry 

Figure 5.25: dynamic axial crushing simulation setup . 

Figure 5.26: spotweld representation . 
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5.5.3 Correlation between numerical and experimental results 

In tenns of resul ts, the dissipated energy is chosen observable. The difference between 
experiment a.] and numerical responses are shawn in Figure 5.27 for t he only bouded spec­
imens. 
The main observation is that for bat h macro and mesoscopic models , t he dissipated 
euergy is overestimated at the begining of the test. Regarding to the mesoscopic madel 
which delivers a higher dissipated energy as the macroscopic one, the final value of t his 
energy is higher and better placed in the experimental responses. In terms of deformed 
shapes , a good correlation is found between the two mo dels and the experiments (Figure 
5.28). ln addition to t his remark , the mesoscopic madel predicts a better shape than the 
macroscopic one. 

by David MORIN 



120 

1e+04 

8 000 

-g 
~ 6 000 .. c: .. 
'i 
1â 4 000 
a. 
';i .. 
ë 

2 000 

Chapter 5. Modeling of bonded structures 

Experiments 
- Macruscopic mode! 
- Mesoscopic mode! 
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Figure 5.27: dissipated energy for bath numerical models and experiments. 

Mesoscopic Macroscopic 

Figure 5.28: deformed shapes for bath numerical models and experiments. 

A study of the influence on the mesh refinement in the thickness is realized (Figure 5.29) 
for the typical aue element through thickness and a 3 elements mesh. This influence 
is very limited <md the quality of the response is slighty modified compare to the t ime 
computation which will be discussed later in thi. paragraph . 

In addit ion , a study on the failure is also realized between the 1 and 3 elements through 
the thickness meshes. Although the failure facies on the only bonded crashboxes are 
dispersives (mixed between cohesive , superficial cohesive and adhesive), the mesoscopic 
mode! is able to reproduce this dispersion but the representation is limited to the use of 
classical fl.nite elements methods. 

A study is also aclüeved on the crack propagation between the 1 and 3 elements through 
t he thickness meshes. The study of the crack propagation is limit ed to the formation of 
t he first local bulking of the specimen . As shown in Figure 5.32 . the difference in crack 
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Figure 5.29: deformed shapes for bath numerical models and experiments. 

Figure 5.30: experimental failure facies of only bonded crashboxes. 
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propagation between t he two meshes is limited by t he size of the mesh . Wit h a fin er 
mesh , t he crack is propagate on a lm·ger surface thau a coarser one. 

As for t he only bonded specimens, the numerica1 responses of the 5 spotwelds and bomling 
specimens show a good correlation with the experimental results (Figure 5.33) . Here 
again the dissipated energy is overestimat ed at the begining of the test but the difference 
hetween the mesa aud the macroscopic models is negligeable for t his case. 

For t he deformed shapes shawn in Figure 5.34, another good correlation is observed 
between numerical and experimental shapes. It can be highlighted t hat the macroscopic 
mo del shows more insta bililty in face of the mesoscopic one. 

As for the previous geometries , a good correlation between the experimental and numerical 
dissipated energies is founcl for t he 10 spotwelds and bonding specimens (Figure 5.35). 
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Figure 5.31: numerical failure facies of only bonded crashboxes. 
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Figure 5.32: numerical crack propagation . 

This energy is always overestimated at t he begining of t he t est but in a lmver wa:v for 
this t ime. Moreover the mesopic mode! provides a very good correlation unt il 100 mm of 
crushing than the macroscopic one is well fit ted until60 mm of crushing. For the deformed 
shapes a good correlation i , alway found (Figure 5.36) but t he me oscopic gives t he be t 
shape. 

To conclude on t hese experiments and related simula tions, a comparison between the 
numerical and the mean experimental dissipated energies is proposed in F igure 5.37. For 
all the crashbox configurations, t he responses of the macro and the mesoscopic models 
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Figure 5.33: dissipated energy for bath numerical models and experiments. 

Mesoscopic Macroscopic 

Figure 5.34: deformed shapes for bath numerical models and experiments. 

are always in the dispersiou of the experiments. lu additiou , the mesoscopic response is 
a.lways the nearest response of the mean experimental energy. 

A summary of the computation times for the different crashbox configurations and finite 
element models used is proposed in Figure 5.38. It can be high lighted than t he light 
difference between the macro and the mesoscopic models responses is directly paid by a 
high increase of the computation time (a.lways greater than 1000 % ). The impact of the 
mesh refinement on t he computation is also described in Figure 5.39. The use of 3 elements 
inside the thickness of the bonded joints lead to a high increase of the computation ( ~ 
76 hours) for no visible effects on the response of the crashbox. It bas to be noticed that 
the study with 5 elements into the thickness is not incorporated in the results due to the 
very high computation time (estimated to 60 days on 24 processors). All the previous 

by Da·uid MORIN 



124 Chapter 5. Modeling of bonded structures 

1.4e+04 

- Experiments 

1.2e+04 - Macroscopic model 
- Mesoscopic model 

-- 1e+04 1: 

>-
E' 8 000 Il 
1: 
Il 
"0 
Il 6 000 .. 
Ill c. 
üi 
"' 4 000 i5 

2 000 

0 
0 20 40 6 0 80 100 120 140 

Axia l crushlng (ln mm ) 

Figure 5.35: dissipated energy for both numerical models and experirnents. 
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Figure 5.36: deformed shapes for both numerical models and experiments. 

quantities have to be place in face of the computation time of only spotwelded crashbox 
which is around 4 minutes. This last point proves that the macroscopic mode! light ly 
impacts the computation t ime aud that adhesive can be taken into account in larger 
structures. 
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Figure 5.37: summary of the experimental and numerical dissipated energies for aU the 
configura ti ons. 
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Figure 5.38: summary of the computation times. 

5.6 Proposition of modeling strategy 

With the previous correlat ions between the experimental and numerical responses but 
also their respectives computation times , a detailled modeling strategy is proposed. From 
the previous paragraph three observations can be made: 

• the accuracy is limited for the macroscopic madel when the deformation is mainly 
control by the adhesive and not the adherent , 

• no large differences are observed on global responses for la.rge F-E models hy using 
mesa or macroscopic models , 

by Da-vid MORIN 



126 

1500 

14 

-.:' 1400 
.1:. 

c: 
:;1350 
E ... 
c: 1 300 
0 ... 
~ 
::1 150 
1:1. 
E 
0 u 1 

50 

Chapter 5. M odeling of bonded structures 

• 1 element through thickness =60 dR.ys 
• 3 elements through thiclcness 
• 5 elements through thiclcness 

Mesh reflnement through the thlckness 

Figure 5.39: influence of mesh refinenement on the computation times. 

• the computation time is highly impacted iu the case of mesoscopic mode! for large 
structures but stay as the same level as the macroscopic one for small structures. 

Since no effect of adhesive modeliug is showu with the macroscopic model on large F-E 
models computatiou times, it is now possible to take into account the bonded joints into 
a full car model. 

----+------------------+----. Time (in s) 

0 0,09 

Figure 5.40: frontal impact of a front car block. 

Then in a complex mode!. the bonded joints can be modeled with the macroscopic mode! 
because the response in tenns of global deceleration will be mainly led by the steel. lu 
addition of these calculations, a detailled mode] can be used with the mesoscopic approach 
so as to study the local behaviour uutil failure of a recluced region . An sample of strategy 
is given for design of front car hlock (Figure 5.40) for a frontal impact at 56 km/ h. 
For instance, the link between the eup shock and the crashbox (Figure 5.33) which is 
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t radi t iounally realized wi t h a weld line and/ or spotwelds could be a place for structural 
bonding. 

0.03 O.U6 0,09 Timt' (i11 11) 

Figure 5.41: det ailled view of t he eup shock - crashbox link. 

This local study can be easily performed with the mesoscopic madel due to its light impact 
on the computation t ime of small F-E models . A first approach with only one element 
through the t hickness of t he bonded joints could he attracti ve but a better response could 
be obtained using 3 elements in t he thickness. 
FinaJly, this modeling strategy allows to mode! the bonded joints at different scales so as 
to limi t the computation t imes for large structures and to use all the benefi ts of a fin e 
prediction on sm a.ll ones. 
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CHAPTER 6 

Conclusions & perspectives 

Nowadays structural bonding is widely used in transportation industry. In the particular 
context of automotive industry, structural bonding is of high interest to reach the 
safe and lightweight goals of constructor. Even if the use of structural bon ding is still 
increasing between new and old car models its use is always limited to luxuous ones. This 
limitations are mainly due to the misknowledge of the constitutive material of the joint 
and also the difficulty to modeled this joint whithout a huge increase of the computation 
time. 
Concerning crashworthiness applications, these adhesives also named crash-stable 
adhesives, are based on a classical epoxy matrix toughened by addition of polymer 
nodules and theirs properties are then highly modified. These properties composed by a 
visco-elastic phase following by a visco-plasticity and damage behaviour are very similar 
to the behaviour of polymer materials. As for the polymers, a difference between the 
tensile and compressive behaviour is present and classical behaviour models can not 
be used to predict the local behaviour of adhesives. In terms of failure models, the 
crash-stable adhesives suffers of a lack detailled models in the literature and are generally 
described by simple criteria. 
The second main limitation is linked to the computations time. Indeed the crashworthi­
ness modelings are generally realized with an explicit integration scheme which requires 
very small time step for small elements. As the thicknesses of bonded joints are generally 
equal to 0.3 mm in automotive structures and the typical length of other elements is 
around 5 mm, the time step used for the algorithm is then highly reduced. Moreover the 
stress heterogeneities through the thickness can only be predict with a minimum of 3 
elements and then the time step is therfore more reduced. 
These thesis works are focused on the finite element modeling of bonded structures for 
crashworthiness. As a fine prediction of the behaviour and failure of bonded joints and 
non-time consuming model are not compatible, the final goal of these works is to provide 
a modeling strategy of bonded structures. 
As a first stage, the behaviour and failure of the chosen crash-stable adhesive (BETA­
MATE 1496VTM) is studied through experiments on bulk specimens. These kinds of tests 
are chosen to avoid classical problems of stress heterogeneties which are generally linked 
to assemblies tests. These tests are perfomed under a wide range of strain rates from 
0.01 ç 1 to 5000 s-1 and for different kinds of loadings. These loadings are composed 
by tensile, notched tensile, compression and shear tests. By realizing classical tensile 
tests and notched tensile tests, the effect of the triaxiality stress ratio on the damage 
evolution and also the failure is studied. With the compression tests, it is highlighted 
that the difference between compressive and tensile behaviour is not only limited to the 
yield stress but also extended to the behaviour law. The shear tests are used to check the 
isotropie behaviour of the considered adhesive and to quantify the failure phenomenon. 
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These experiments are analysed using different techniques including both contact and 
non-contact methods. The elasticity measurements are assumed by classical strain 
gages for both tensile and shear specimens and with an electro-optical extensometer for 
the compression tests. Both 2D and 3D digital image correlation techniques are used 
to investigate the plasticity and failure of the adhesive. For the determination of the 
tensile behaviour laws at constant strain rate, the SEÊ method is used. From all these 
measurements, mathematical models are identified to represent the physical properties 
of the adhesive. 
The second step presented in these works is focused on the definition of the mesoscopic 
model. This model is implemented into the finite element software ABAQUS explicit 
through a VUJVIAT (Vectorized User MATerial) subroutine. A fine description of the 
adhesive properties is realized using the mesoscopic approach but a high impact on the 
time step is made. This madel is able to reproduce all the behaviour and failure models 
identified in the previous part of the thesis. The non-isochoric behaviour of the adhesive 
is taken into account with a non-associative plastic flow. This non-associative plastic 
flow is limited to the tensile contribution of the behaviour due to the fact that no damage 
phenomena can occur in both compression and shear. A damage model also previously 
identified is used, this model is able to predict the dependency of the damage evolution 
on the triaxiality stress ratio. The failure model is based on an equivalent failure strain 
which evolves with the strain rate and the triaxiality stress ratio. 
These previous works are followed by the macroscopic madel development. The macro­
scopic approach allows to take into account the bonded joints whithout effect on the 
time step but the behaviour and failure of the adhesive are simplified. The macroscopic 
model is based on the spring element time step used for the classical interface and 
cohesive elements. Behaviour and failure computations are based on 3 independant 
springs representing the tension/ compression and the 2 in plane-shear components. 
This approach is implemented in ABAQUS explicit through a VUEL (Vectorized User 
ELement) subroutine. This part of the thesis explains all the requirements which are 
involved to develop a macroscopic element. These steps are described from the mass ma­
trix computation to the nodal forces update through the local basis, opening and sliding 
displacements, strains and stresses computations. The identification of the macroscopic 
behaviour are realized on the same experimental database than the mesoscopic model but 
with a simplified analysis. The failure properties are them extracted from special purpose 
tests. These tests based on tensile and shear loadings are achieved with double U and 
double shear lap joints specimens respectively. The analysis of the opening and sliding 
displacement which lead to failure, is realized with digital image correlation technique. 
Finally, the modeling strategy is proposed based on the analysis of different validation 
tests. Two different load complexity tests are chosen to correlate the numerical responses. 
For the dynamic flexure tests, it is highlighted that only the mesoscopic model delivers 
a good description of the force response during all the test. It also appears that the 
compututation time between the macro and the mesoscopic models differs from a few 
seconds only. The influence of the mesh sensitivity through the thickness is also realized 
with this load case. The quality of the response is then improved with the thickness mesh 
refinenement as expected. The simulations of dynamic axial crushing tests have shown 
a good correlation with the experiments for the both approachs. This fact is due to the 
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global response of the crashbox which is mainly dominated by the steel sheets. Even 
if the quality of the resp011se is lightly affected by the mode! used for the adhesive the 
computation is weil impacted. As au example the 10 spotwelds crashbox shows a time 
computation of 4 minutes for the only spotwelded configuration , 4 minutes and 16 sec.owis 
for spotwelded/ bonding configuration with the macroscopic approach and more than 1 
hour for the mesoscopic approach. From the quality of these numerical/ experimental 
correlations and their computation times , a modeling strategy is then proposed and an 
example is given on the frontal impact of a front car block. This strategy postulates 
that the bonded joints can be included inside a huge mode! whithout influencing the 
computation time hut local study of conuector behaviour and failure can be realized with 
a fine mesoscopic approach. 

Although the proposed models of this thesis show a good correlation with experi­
mental data , ma11y improvements can be bring to t hese models. These improvements are 
focused the discarded points of these works. In terms of experimental characterization 
of the bulk adhesive. the elast ic t.ensile properties as weil as the plastic and failure ones 
should be investigate at higher strain rates with a different setup of Hopkinson bars. In 
addition. the shear properties have to be investigate under a wide range of strain rates, 
for that the Iosipescu test used in this thesis is not suitable and other tests are required. 
A new specimen is designee! for polymerie materials (Figure 6.1) , this specimen allows 
the characterization of the shear behaviour failure from quasi-static to intermediate 
strai n ra tes ( around 100 ç 1). 
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Figure 6.1: illustration of new shear specimens for polymerie rnaterials. 

The damage madel usee! in this thesis needs to be improved by adding a void evolution law. 
This law is experimentally identified by achieving in-situ tensile in a micro-tomograph . 
With this deviee X-ray picture of the instantaneous resistant plane of a reduced specimen 
ca.n be obtained and the voids are directly located. 
Another way coule! lead to the study of thermal effects on the behaviour and failure of 
adhesive. Indeed during high strain rate loading and especially in crashworthiness events, 
the temperature can rapidly increase. So the study of the self heating of t he adhesive 
and its behaviour and failure under high temperatures have to be investigated to take 
a step forward . In tenns of failure criterion, the experimental database of this thesis 

by David MORIN 



132 Chapter 6. Conclusions & perspectives 

should be extended in tenns tria.'<iality stress ratios so as to allow the developrnent of a 
better mathematical model. This extension could be realized by achieving tests on Arcan 
specimens but also teusile specimens with different notch radius and sorne biaxial t ensile 
specimens (Figure 6.2). 

~------------~----~+ +~------~ 

Figure 6.2: illustratiou of possible extensions of failure criteriou. 

1any improvements can also be made on the macroscopic fini te element. Instead of t.lu-ee 
independant springs an equivalent formulation could be interesting. This equivalent for­
nmlation '"'ill allow to use a real yield surface in which a hydrostatic pressure dependency 
can he described. The plasticit) computation of this element can also be improved by 
an iterative formulation with a non-associative approach. Here again the damage model 
could also be improved using the sa me or a simplified version of the mesoscopic damage 
mode!. The failure properties identification of this element is also a point of improvement. 

lthough the sti·ain rate sensitivity seems to be negligeable in bondcd asscmblies dtw to 
the triaxiality stress ratio , high strain rate testing on Hopkinson bars could give interest­
ing informations. For that new specimens and Hopkin. on bars are designed (Figure 6.3) 
so as to achieve tensile , shear and mixed loadings on bonded joints. 

Shear Mixed loading Teusile 

- // Il Il 

Sliding impactor 

~ 
lm 

lnput bar 

~ 
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/ 
Output bar 

/ 
5.8Jn 4m 

Figure 6.3: new specimens aud Hopkinson bars deviee for the high strain rat e testing of 
bonded joints. 
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To conclude these perspectives, a last moclel could be develop so as to realize a fine 
prediction of the behaviour and failure of the adhesive with a small impact on the time 
computation. This moclel coulcl be based on a macro element in which a sub calculation 
with a Jine mesh and the mesoscopic madel (Figure 6.4) will be used. 

Figure 6.4: new macro element. 
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