Skip to Main content Skip to Navigation
Journal articles

Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study

Abstract : We present an empirical comparison of two new meta-heuristics SSO and FP.Real test images were used to perform thresholding using Otsu's method and Kapur's entropy.Compared algorithms were SSO, FP, PSO, BAT.Comparisons were made according to the fitness values, PSNR and SSIM.SSO shows superior performance in convergence and in quality terms. In this paper, we investigate the ability of two new nature-inspired metaheuristics namely the flower pollination (FP) and the social spiders optimization (SSO) algorithms to solve the image segmentation problem via multilevel thresholding. The FP algorithm is inspired from the biological process of flower pollination. It relies on two basic mechanisms to generate new solutions. The first one is the global pollination modeled in terms of a Levy distribution while the second one is the local pollination that is based on random selection of local solutions. For its part, the SSO algorithm mimics different natural cooperative behaviors of a spider colony. It considers male and female search agents subject to different evolutionary operators. In the two proposed algorithms, candidate solutions are firstly generated using the image histogram. Then, they are evolved according to the dynamics of their corresponding operators. During the optimization process, solutions are evaluated using the between-class variance or Kapur's method. The performance of each of the two proposed approaches has been assessed using a variety of benchmark images and compared against two other nature inspired algorithms from the literature namely PSO and BAT algorithms. Results have been analyzed both qualitatively and quantitatively based on the fitness values of obtained best solutions and two popular performance measures namely PSNR and SSIM indices as well. Experimental results have shown that both SSO and FP algorithms outperform PSO and BAT algorithms while exhibiting equal performance for small numbers of thresholds. For large numbers of thresholds, it was observed that the performance of FP algorithm decreases as it is often trapped in local minima. In contrary, the SSO algorithmprovides a good balance between exploration and exploitation and has shown to be the most efficient and the most stable for all images even with the increase of the threshold number. These promising results suggest that the SSO algorithm can be effectively considered as an attractive alternative for the multilevel image thresholding problem.
Document type :
Journal articles
Complete list of metadata
Contributor : Mylène Delrue Connect in order to contact the contributor
Submitted on : Friday, November 12, 2021 - 6:04:20 PM
Last modification on : Saturday, November 13, 2021 - 3:53:31 AM




Salima Ouadfel, Abdelmalik Taleb-Ahmed. Social spiders optimization and flower pollination algorithm for multilevel image thresholding: A performance study. Expert Systems with Applications, Elsevier, 2016, 55, pp.566-584. ⟨10.1016/j.eswa.2016.02.024⟩. ⟨hal-03426984⟩



Record views