Description of Unified Model of Driver behaviour (UMD) and definition of key parameters for specific application to different surface transport domains of application - Université Polytechnique des Hauts-de-France Accéder directement au contenu
Rapport (Rapport De Recherche) Année : 2010

Description of Unified Model of Driver behaviour (UMD) and definition of key parameters for specific application to different surface transport domains of application

Résumé

The first work package (WP1) contains a critical review and synthesis of human behaviour models ofdrivers of road vehicles, trains and maritime vessels (ships). Based on this review a reference modelof Driver–Vehicle–Environment is developed. A variety of approaches to modeling driver behaviourare possible as options. The literature review covers the more widely cited of these. Generally, thesemight be categorized as either 'Descriptive' models which can only describe the driving task in termsof what the driver has to do or 'Functional' models which are able to explain and predict drivers'performance in demanding situations and drivers' behaviour in typical ones. It seems that theoptimal approach might be a hybrid of several types of models. In recent years, a variety of driversupport and information management systems have been designed and implemented with theobjective of improving safety as well as performance of vehicles. While the crucial issues at atechnical level have been mostly solved, their consequences for driver behaviour remain to be fullyexplained. To reach this goal predictive models of the interaction of the driver with the vehicle andthe environment are necessary. The aim of the European Project AIDE was to integrate all in vehiclesupport and information systems in a harmonized user interface (Saad, 2006). The ITERATE projectwill take this further by developing it into a unified driver model that is also applicable to othertransport domains.The first deliverable in this work package (D1.1) presented a critical review of Driver-Vehicle-Environment (DVE) models and most relevant drivers' parameters and variables to be implementedin such models, in different surface transport modes and in different safety critical situations. Theaim of this deliverable (D1.2), succeeding D1.1 is to describe and detail the Unified Model of Driverbehaviour (UMD), define the environmental parameters to be implemented and their relationshipswith the driver variables. The proposed model will be used to support design and safety assessmentof innovative technologies and make it possible to adapt these technologies to the abilities, needs,driving style and capacity of the individual drivers. The model will also present the environmentalparameters, different road and traffic scenarios with different weather and visibility conditions to besimulated in the test phases. The scenarios of traffic that are independent of the activities carried outby the vehicle and driver will be simulated. The model is simplified in the sense that traffic conditions(density, complexity) are not sensitive to the 'test' driver and vehicle behaviour, but remain fixed in agiven trial. Thus, within the constraints of this pioneering effort, only the behaviour of the test driveris variable, while the environment and vehicle are defined as parameters with fixed values.
Fichier non déposé

Dates et versions

hal-03648099 , version 1 (21-04-2022)

Identifiants

  • HAL Id : hal-03648099 , version 1

Citer

Ilit Oppenheim, David Shinar, Simon Enjalbert, Rudy Dahyot, Marianne Pichon, et al.. Description of Unified Model of Driver behaviour (UMD) and definition of key parameters for specific application to different surface transport domains of application. [Research Report] LAMIH, Valenciennes. 2010, pp.60. ⟨hal-03648099⟩
20 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More